
An iterated greedy algorithm for the obnoxious
p-median problem

Osman Gokalp

Department of Computer Engineering, Ege University, Izmir, Turkey

Abstract

The obnoxious p-median problem (OpM) is one of the NP-hard combinatorial

optimization problems, in which the goal is to find optimal places to facilities

that are undesirable (e.g. noisy, dangerous, or pollutant) such that the sum of

the minimum distances between each non-facility location and its nearest facility

is maximized. In this paper, for the first time in the literature, Iterated Greedy

(IG) metaheuristic has been applied at a higher level to solve this problem. A

powerful composite local search method has also been developed by combining

two fast and effective local search algorithms, namely RLS1 and RLS2, which

were previously used to solve the OpM. Comprehensive experiments have been

conducted to test the performance of the proposed algorithm using a common

benchmark for the problem. The computational results show the effectiveness of

the IG algorithm that it can find high-quality solutions in a short time. Based

on the set of selected instances, the results also reveal that the developed IG

algorithm outperforms most of the state-of-the-art algorithms and contributes

to the literature with 5 new best-known solutions.

Keywords: Obnoxious p-median problem, Iterated greedy, Metaheuristics,

Combinatorial optimization

Email address: osman.gokalp@ege.edu.tr (Osman Gokalp)

Preprint submitted to Journal of LATEX Templates July 18, 2021

1. Introduction

Facility location problems deal with finding optimum places to facilities with

respect to given constraints (Farahani and Hekmatfar, 2009). The term facility

is used here in a broader context that it may refer to numerous different entities

such as schools, bus stops, fire stations, and warehouses (Current et al., 2002). It5

is generally preferred that the facilities are close to the demand points. However,

when facilities are undesirable, or obnoxious, e.g. noisy, chemical, nuclear, or

pollutant, the goal is to place them as far away from the demand points as

possible. In this context, the obnoxious p-median problem (OpM) (Church and

Garfinkel, 1978) is defined as to locate p facilities such that the total of minimum10

distances between each non-facility entity (such as clients or customers) and its

nearest facility is maximized. In this way, OpM can be modeled as a p-maxi-sum

problem that was proven to be NP-Hard in (Tamir, 1991).

Because OpM is an NP-hard problem, there is no algorithm available that

guarantees to find optimum solutions for varying size of p. Therefore, approxi-15

mation algorithms are preferred to produce acceptable solutions in a reasonable

time. Belotti et al. (2007) formulated OpM as a binary linear programming

problem and described a Branch and Cut (BC) algorithm (Mitchell, 2002) to

solve it. In the same paper, they also improve the performance of BC using eX-

ploring Tabu Search (XTS) (Dell’Amico et al., 1999) approach. Later, Colmenar20

et al. (2016) first applied a pure heuristic algorithm, based on Greedy Random-

ized Adaptive Search Procedure (GRASP) metaheuristic (Feo and Resende,

1995), to solve the OpM. They showed that GRASP outperformed both BC

and XTS algorithms. Then, Herrán et al. (2018) proposed another metaheuris-

tic based on parallel Variable Neighborhood Search (VNS) (Mladenović and25

Hansen, 1997) along with two simple and fast local search methods. It has been

shown that parallel VNS could outperform all the previous algorithms. More

recently, Lin and Guan (2018) proposed an algorithm based on a binary Particle

Swarm Optimization (PSO) metaheuristic (Eberhart and Kennedy, 1995), and

Mladenovic et al. (2019) proposed an algorithm based on a basic VNS for solv-30

2

ing the OpM. Despite the important contributions of these studies, the OpM

literature is relatively new, and therefore it is considered that producing faster,

simpler and more robust algorithms which produce high-quality solutions is still

highly valued.

This paper uses Iterated Greedy (IG) algorithm for solving the OpM. As35

one of the main metaheuristics for solving combinatorial optimization prob-

lems, IG consists of two main phases, namely destruction and construction in

which solution components are removed and added, respectively. After it was

first proposed by Ruiz and Stützle (2007) for solving the permutation flow-

shop scheduling problem, IG has also been successfully applied to wide range40

of optimization problems such as traveling salesman problem (Karabulut and

Tasgetiren, 2014), job scheduling problem (Arroyo et al., 2019), vehicle routing

problem (Nucamendi-Guillén et al., 2018), vertex cover problem (Bouamama

et al., 2012), and knapsack problem (Garćıa-Mart́ınez et al., 2014). The OpM

is another hard combinatorial optimization problem that requires exploring a45

search space by adding and removing solution components. Therefore, IG al-

gorithm is an ideal candidate for solving the OpM because of its algorithmic

structure (i.e. construction/destruction) and robustness.

The main contribution of this paper is to develop an IG algorithm at the

master level to solve the OpM for the first time in the literature. Although IG50

like method was used in (Lin and Guan, 2018) before, it was a very limited

version of the algorithm that only consists of single remove and add operations.

Also, it was used for just local search step and did not manage the overall

optimization process. The second contribution of this work is to develop a com-

posite local search algorithm with a high exploitation capability that combines55

two simple and fast local search methods.

According to the well-known No Free Lunch Theorem (Wolpert et al., 1997),

the performance of an optimization algorithm is highly dependent of a problem

type to be solved. In fact, considering all possible problems, the average perfor-

mance of any pair of algorithms is identical. Therefore, the effectiveness of the60

proposed IG algorithm has been tested on a common OpM benchmark, which

3

was used previously by all the state-of-the-art algorithms for this problem. The

computational results show that, based on the benchmark used, the proposed

algorithm outperforms most of the state-of-the-art algorithms in terms of both

solution quality and algorithm running time. In addition, it has contributed to65

the literature by producing 5 new best solutions.

This paper has been organized in the following way. Section 2 gives the

mathematical formulation of the OpM and outlines the basic IG and its algo-

rithmic structure. Then, in section 3, the proposed IG algorithm is explained

in detail along with its construction rule, composite local search method and70

solution structure. After that, the experimental framework used in this study,

the computational results obtained, and comparison with other algorithms are

given in section 4. Finally, section 5 concludes the paper.

2. The background

2.1. Problem formulation75

The formal definition of the OpM problem can be given as follows. Let I

be the set of clients, J be the set of facilities, and di,j be the distance between

the client i ∈ I and the facility j ∈ J . Given the objective function f(·), the

goal of the problem is to find a set S ⊆ J of size p that maximizes the sum of

minimum distances between each client and its nearest facility as follows:

max f(S) =
∑
i∈I

min{di,j : j ∈ S} (1)

The terms open facility and closed facility are used for the facilities in set S and

set J \ S, respectively.

2.2. Basic iterated greedy algorithm

Iterated Greedy (IG) (Ruiz and Stützle, 2007) is a simple yet powerful meta-

heuristic algorithm for solving combinatorial optimization problems. IG basi-80

cally consists of two main phases, namely destruction and construction, which

are applied consecutively on a given solution through a number of iterations.

4

As it is given in Algorithm 1, each iteration starts with the destruction phase in

which some part of an incumbent solution is randomly removed, and a partial

solution is produced. Then, the missing parts of the partial solution is com-85

pleted during the construction phase. After that, the local search is optionally

applied to the candidate solution for possible improvement. At the final stage of

each iteration, the candidate solution is checked whether it will be accepted as a

new incumbent solution. These steps are repeated until a termination condition

is satisfied (e.g. maximum number of iterations, maximum elapsed time).90

It should be noted that the general algorithmic structure of IG is similar to

that of Iterated Local Search (ILS) (Lourenço et al., 2003) algorithm. In fact,

the combination of destruction and construction phases of IG can be seen as a

perturbation phase of ILS. However, the difference between the two algorithms

is that the perturbation of ILS is only done with random changes in a given95

neighborhood whereas IG also exploits a constructive heuristic. Therefore, local

search is left optional for IG algorithms, which is not necessarily true for ILS

(Stützle and Ruiz, 2018).

Algorithm 1: Basic Iterated Greedy algorithm

1 Sz ← generate an initial solution ;

2 S∗ ← apply local search to Sz ; . optional

3 while termination condition is not satisfied do

4 Sp ← apply destruction to S∗ ;

5 S′ ← apply construction to Sp ;

6 S′ ← apply local search to S′ ; . optional

7 if acceptance criterion is satisfied then

8 S∗ ← S′

9 end

10 end

11 return S∗

5

3. The proposed iterated greedy algorithm for the OpM

3.1. Pseudocode of the generic algorithm100

The outline of the proposed IG algorithm is given in (Alg. 2). First of all, the

current solution S is generated randomly by adding one closed facility at a time

until the size of the solution reaches p. Additionally, the local search is applied

to S and it is stored as the best solution so far, denoted by S∗. Then, the

algorithm tries to improve the S∗ in its main loop until the maximum number105

of iterations (MAX ITER) is reached.

At the beginning of each iteration, the destruction size d is calculated pro-

portionally to the solution size p using the parameter dpercent. Then, in the

destruction phase, d opened facilities are closed randomly by being removed

from S. Afterward, the obtained partial solution is completed step by step110

using the greedy selection rule, and the feasible candidate solution is obtained

again. The greediness of the selection is determined by parameter α, which can

take values in [0, 1] that 0 corresponds to a completely random selection whereas

1 corresponds to a completely greedy selection. Lastly, S is further tried to be

improved by the local search algorithm and it is accepted as best solution so far115

if its objective value is greater than that of the S∗. If it is not accepted, S is

restored with its previous value, which is S∗.

3.2. Greedy selection

A selection rule defines how to decide a new solution component that is going

to be added for a partial solution, and used many times in construction and local120

search phases of the proposed algorithm. Adopted from Greedy Randomized

Adaptive Search Procedure (Feo and Resende, 1995), the greedy selection rule

that is used in this work is given in Alg. 3, and explained as follows. In the first

step of the selection process, the candidate list (CL) is built by including the

facilities that are not in S. Then, the facilities in CL are evaluated by ∆add(·)125

function that calculates the objective value change in case of a given facility is

opened. Using the values of ∆min, ∆max and α, the restricted candidate list,

6

Algorithm 2: The proposed iterated greedy algorithm for solving OpM

input : p, α, dpercent

output: S∗

1 S ← GenerateSolutionRandomly();

2 S ← CompositeLocalSearch(S);

3 S∗ ← S ;

4 for i← 1 to MAX ITER do

5 d← p× dpercent;

6 for i← 1 to d do . Destruction phase

7 k ← RandomSelection(S) ;

8 S ← S \ {k};

9 end

10 for i← 1 to d do . Construction phase

11 l← GreedySelection(S, α) ;

12 S ← S ∪ {l};

13 end

14 S ← CompositeLocalSearch(S) ; . Local search phase

15 if f(S) > f(S∗) then

16 S∗ ← S; . Accept S as the new best solution

17 else

18 S ← S∗; . Restore S with its previous value

19 end

20 end

7

denoted by RCL, is constructed. In RCL construction, facilities in CL with

higher ∆add value are collected with respect to the parameter α. Finally, a

random element is chosen from the RCL and returned as a selected facility.130

Note that the greediness of the selection is controlled by the parameter α. To

be more precise, when it takes 0, all the CL elements are included in the RCL,

hence a purely random selection is made. On the other hand, when it takes 1,

only the first element of the CL which has the ∆max value is included into RCL,

hence a purely greedy selection is made. Generally, a good performing value135

for α is somewhere between 0 and 1, which is depending on a given problem

instance and other parameters.

Algorithm 3: GreedySelection

input : S, α

output: l

1 CL ← J \ S;

2 ∆min ← min
j∈CL

∆add(j);

3 ∆max ← max
j∈CL

∆add(j);

4 RCL ← {j ∈ CL | ∆add(j) ≥ ∆min + α× (∆max −∆min)};

5 l← RandomSelection(RCL) ;

3.3. Composite local search

Local search is an essential component for most of the metaheuristics because

it contributes to exploitation behavior of the general search process. This study140

develops a composite local search (Alg. 4) that combines two low-level local

search methods, namely RLS1 and RLS2, which were successfully used before

to solve OpM by Herrán et al. (2018). The developed local search makes use

of these two methods in a way that one is called after another as long as an

improvement is obtained from one of the algorithms.145

How RLS1 and RLS2 work is defined in Alg. 5 and Alg. 6, respectively,

and explained as follows. Given ∆drop(j) = f(S) − f(S \ {j}) where, j ∈ S

8

Algorithm 4: CompositeLocalSearch

input : S

output: S

1 improved← true;

2 while improved do

3 improved← false;

4 ∆f ← RLS1(S);

5 while ∆f > 0 do

6 improved← true;

7 ∆f ← RLS1(S);

8 end

9 ∆f ← RLS2(S);

10 while ∆f > 0 do

11 improved← true;

12 ∆f ← RLS2(S);

13 end

14 end

9

and ∆add(j) = f(S) − f(S ∪ {j}) where, j ∈ J \ S, RLS1 first removes a

facility that has the maximum ∆drop value and then adds a facility that has the

maximum ∆add value. On the other hand, RLS2 first adds a facility that has the150

maximum ∆add value, and then removes a facility that has the maximum ∆drop

value. Although these two techniques appear to be similar, they can produce

different neighborhoods, hence, result in different solutions.

Note that, ∆drop(·) ≥ 0 and ∆add(·) ≤ 0. So, if the absolute value of

dropping gain is bigger that of adding loss, ∆f > 0, and the solution is improved.155

Otherwise, in the worst case, the same facility is dropped and added, ∆f gets

zero, and the solution remains unchanged.

Algorithm 5: RLS1

input : S

output: S,∆f

1 k ← argmax
j∈S

∆drop(j);

2 S ← S \ {k};

3 l← argmax
j∈J\S

∆add(j);

4 S ← S ∪ {l};

5 ∆f ← ∆drop(k) + ∆add(l);

Algorithm 6: RLS2

input : S

output: S,∆f

1 l← argmax
j∈J\S

∆add(j);

2 S ← S ∪ {l};

3 k ← argmax
j∈S

∆drop(j);

4 S ← S \ {k};

5 ∆f ← ∆drop(k) + ∆add(l);

10

3.4. Solution structure and evaluation of the objective function

Most of the computation effort of the proposed algorithm is spent on de-

struction, construction and local search phases that are all based on adding or160

removing facilities to/from a solution at hand. So, it is important to use effi-

cient methods to eliminate unnecessary calculations as much as possible. For

this purpose, an auxiliary list (cf) that holds the closest facilities for each client

as in (2) has been used.

∀i ∈ I, cfi = argmin
j∈S

{di,j} (2)

Using cf , one can calculate the value of the objective function f(·) in O(| I |)165

time as in (3).

f(S) =
∑
i∈I

di,cfi (3)

Suppose that a facility j /∈ S is added to a solution S. Depending on the

distance between the client i and the facility j, the new closet facilities list,

denoted by cf ′, is either remains its previous value or takes j as in (4). Because

both of the scenarios require O(1) check operation per client, the overall time170

complexity for calculating the new closest facilities list is O(| I |).

∀i ∈ I, cf ′i =

cfi, if di,j > di,cfi

j, otherwise

(4)

On the other hand, suppose that a facility j ∈ S is removed from a solution

S. In the first case, the facility j is different than the cfi, there will be no

change. In the second case, the facility j is the same with the cfi, so, there is

a need to find the second minimum distant facility to replace the previous one.175

Considering these cases, the calculation of cf ′ after removing the facility j is

done as in (5). Note that, for each client, the former case requires only O(1)

time; whereas the latter case requires O(| S |) time since the linear search is

performed on an unsorted list. In the best scenario in which the removed facility

11

never exist in the cf , the overall time complexity will be O(| I |). Contrarily, in180

the worst scenario in which all the values in cf equal the removed facility, the

overall time complexity will be O(| I | × | S |).

∀i ∈ I, cf ′i =

cfi, if j 6= cfi

argmin
j′∈S\{j}

{di,j′}, otherwise
(5)

4. Experimental work

The proposed IG algorithm was implemented in Visual C++ and ran on a

computer with the configuration of Intel Core i7 6700, 3.40 GHz CPU using a185

single core.

Performance evaluation of the proposed algorithm has been carried out on

OpM LIB1 benchmark instances. This benchmark consists of two instance lists,

namely A and B. Described by Belotti et al. (2007), list A is generated by

transforming 24 p-median instances (from pmed17 to pmed40) of OR-Library190

(Beasley, 1990) into 72 OpM instances. Then, list B is produced by transposing

the matrix for each instance that includes distances between clients and facilities.

Table 1 reports all the instance names and their properties, where n is the

number of clients, m is the number of facilities and p is the number of facilities

to be opened. Note that there exist A and B version for each instance, hence a195

total of 144 OpM instances are listed.

For the preliminary experiments, a total of 16 representative instances with

different characteristics (marked as bold in Table 1) has been used instead of

using the whole benchmark as suggested in (Herrán et al., 2018) in order to

prevent the proposed algorithm from over-fitting.200

It is also worth mentioning that the proposed algorithm has been run 50

times with different random seeds for all the experiments conducted in this

paper due to the fact that IG is a probabilistic algorithm, and it may produce

1 OpM LIB benchmark is publicly available at http://grafo.etsii.urjc.es/optsicom/opm/.

12

Table 1: Instances generated from the OR-Library (Beasley, 1990)

Instance n m p Instance n m p

pmed17-p100[A/B] 200 200 100 pmed29-p150[A/B] 300 300 150

pmed17-p25[A/B] 200 200 25 pmed29-p37[A/B] 300 300 37

pmed17-p50[A/B] 200 200 50 pmed29-p75[A/B] 300 300 75

pmed18-p100[A/B] 200 200 100 pmed30-p150[A/B] 300 300 150

pmed18-p25[A/B] 200 200 25 pmed30-p37[A/B] 300 300 37

pmed18-p50[A/B] 200 200 50 pmed30-p75[A/B] 300 300 75

pmed19-p100[A/B] 200 200 100 pmed31-p175[A/B] 350 350 175

pmed19-p25[A/B] 200 200 25 pmed31-p43[A/B] 350 350 43

pmed19-p50[A/B] 200 200 50 pmed31-p87[A/B] 350 350 87

pmed20-p100[A/B] 200 200 100 pmed32-p175[A/B] 350 350 175

pmed20-p25[A/B] 200 200 25 pmed32-p43[A/B] 350 350 43

pmed20-p50[A/B] 200 200 50 pmed32-p87[A/B] 350 350 87

pmed21-p125[A/B] 250 250 125 pmed33-p175[A/B] 350 350 175

pmed21-p31[A/B] 250 250 31 pmed33-p43[A/B] 350 350 43

pmed21-p62[A/B] 250 250 62 pmed33-p87[A/B] 350 350 87

pmed22-p125[A/B] 250 250 125 pmed34-p175[A/B] 350 350 175

pmed22-p31[A/B] 250 250 31 pmed34-p43[A/B] 350 350 43

pmed22-p62[A/B] 250 250 62 pmed34-p87[A/B] 350 350 87

pmed23-p125[A/B] 250 250 125 pmed35-p100[A/B] 400 400 100

pmed23-p31[A/B] 250 250 31 pmed35-p200[A/B] 400 400 200

pmed23-p62[A/B] 250 250 62 pmed35-p50[A/B] 400 400 50

pmed24-p125[A/B] 250 250 125 pmed36-p100[A/B] 400 400 100

pmed24-p31[A/B] 250 250 31 pmed36-p200[A/B] 400 400 200

pmed24-p62[A/B] 250 250 62 pmed36-p50[A/B] 400 400 50

pmed25-p125[A/B] 250 250 125 pmed37-p100[A/B] 400 400 100

pmed25-p31[A/B] 250 250 31 pmed37-p200[A/B] 400 400 200

pmed25-p62[A/B] 250 250 62 pmed37-p50[A/B] 400 400 50

pmed26-p150[A/B] 300 300 150 pmed38-p112[A/B] 450 450 112

pmed26-p37[A/B] 300 300 37 pmed38-p225[A/B] 450 450 225

pmed26-p75[A/B] 300 300 75 pmed38-p56[A/B] 450 450 56

pmed27-p150[A/B] 300 300 150 pmed39-p112[A/B] 450 450 112

pmed27-p37[A/B] 300 300 37 pmed39-p225[A/B] 450 450 225

pmed27-p75[A/B] 300 300 75 pmed39-p56[A/B] 450 450 56

pmed28-p150[A/B] 300 300 150 pmed40-p112[A/B] 450 450 112

pmed28-p37[A/B] 300 300 37 pmed40-p225[A/B] 450 450 225

pmed28-p75[A/B] 300 300 75 pmed40-p56[A/B] 450 450 56

13

different results for different runs.

4.1. Preliminary experiments205

4.1.1. Parameter setting

Parameters affect the quality of produced solutions directly and it is impor-

tant to find appropriate values to each of them. For this purpose, the irace

package (López-Ibáñez et al., 2016), which is an automated parameter con-

figuration tool based on iterative racing procedure, was used in this study to210

determine the values of the α and dpercent.

In the configuration of irace, the representative instances that belong to

instance list A were selected as training instances whereas the representative

instances that belong to instance list B were selected as test instances. The

tuning budget was set to 1000 iterations, and the other settings were kept by215

default. In addition, MAX ITER of the IG algorithm was set to p × 5. The

tuned values that were obtained after following this configuration can be seen

in Table 2, and have been used in the rest of the computational study in this

work.

Table 2: The tuned parameter values for the IG algorithm after using the irace

Param. name Param. type Tuning interval Tuned values

α real [0.1, 0.9] 0.79

dpercent real [0.1, 0.9] 0.61

4.1.2. The effectiveness of the composite local search220

This section analyzes the performance of the composite local search algo-

rithm that is developed in this study. As explained before in Section 3.3, com-

posite local search consists of RLS1 and RLS2 algorithms and uses them con-

secutively as long as an improvement is obtained. In order to measure how the

developed local search contributes to the performance of the IG algorithm, these225

three cases have been considered: IG with RLS1, IG with RLS2 and IG with

composite local search. To make a fair comparison, all the cases were run for

the same amount of time budget of p× 0.01 seconds.

14

Table 3: Impact of different local search strategies on the performance of the proposed algo-

rithm. Cost, time (T.) and iteration (Iter.) values are averaged over 50 independent runs for

each algorithm/instance pair.
IG with RLS1 IG with RLS2 IG with Composite LS

Instance Cost T. (s) Iter. Cost T. (s) Iter. Cost T. (s) Iter.

pmed17-p25A 6261.82±87.26 0.25 148.1 6261.50±101.15 0.25 145.82 7317.00±0.00 0.25 56.14

pmed20-p50A 5307.82±57.82 0.50 250.2 5302.44±62.77 0.50 244.24 5871.82±1.27 0.50 122.82

pmed22-p62A 5146.06±73.11 0.62 169.5 5146.34±76.75 0.62 170.76 5992.54±5.42 0.62 78.86

pmed28-p75A 4496.32±71.02 0.75 121.0 4505.42±77.66 0.75 119.16 5670.16±6.74 0.76 50.2

pmed33-p87A 4943.32±60.88 0.88 87.1 4943.52±58.16 0.87 84.86 5784.14±10.82 0.88 41.68

pmed36-p100A 5266.42±78.43 1.01 62.8 5262.94±73.61 1.01 62.76 6453.90±6.33 1.02 30.64

pmed39-p112A 4755.30±70.11 1.13 53.0 4750.54±62.40 1.13 52.18 5927.96±9.57 1.14 24.04

pmed40-p225A 4036.60±56.32 2.27 68.9 4034.50±57.04 2.27 69.18 4560.48±5.39 2.28 42.16

pmed17-p25B 6124.56±76.50 0.25 154.4 6121.00±83.79 0.25 152.56 6905.00±0.00 0.25 62.18

pmed20-p50B 4901.84±71.02 0.50 272.6 4899.00±73.51 0.50 270.6 5665.00±0.00 0.50 120.3

pmed22-p62B 5075.12±56.91 0.62 161.5 5081.90±47.81 0.62 164.24 6259.00±0.00 0.62 69.5

pmed28-p75B 4714.18±48.72 0.75 114.8 4721.88±52.41 0.75 115.92 5625.08±7.19 0.76 53.42

pmed33-p87B 4925.46±58.38 0.88 81.6 4937.18±60.98 0.88 82.1 5823.44±9.34 0.88 41.06

pmed36-p100B 5172.10±63.70 1.01 63.5 5168.04±55.32 1.01 63.84 6193.76±18.48 1.02 31.76

pmed39-p112B 4691.42±76.08 1.13 52.1 4688.82±76.40 1.13 51.7 6183.80±10.32 1.15 23.68

pmed40-p225B 4183.70±49.93 2.27 68.4 4188.42±51.93 2.27 68.68 4512.92±5.54 2.27 44.26

Avg. 5000.13±66.01 0.93 120.60 5000.84±66.98 0.93 119.91 5921.63±6.03 0.93 55.79

Wilcox. S.R. p < 0.001 p < 0.001

The results obtained for 16 representative instances are listed in Table 3.

By averaging over 50 runs, the column ”Cost” reports the maximized objective230

function value, the column ”T.” reports the elapsed CPU time in seconds, and

the column ”Iter.” reports the iteration count when the algorithm terminates.

Average results show that IG with composite local search reaches the lowest

average iteration count in a given time budget since it requires more CPU time

than both RLS1 and RLS2. However, it is seen that the average cost value of235

the composite local search is overwhelmingly better than those of both RLS1

and RLS2. Also, the lower standard deviation values show the robustness of

the composite local search in a given limited time. The difference between

the developed composite local search and the two others has also been tested

by Wilcoxon signed-rank method which is a non-parametric statistical test to240

compare two related samples. The obtained p < 0.001 values indicate that these

differences are both statistically significant for a selected representative instance

set.

15

4.1.3. Computational results over the whole set of instances

In this section, the performance of the proposed algorithm is evaluated over245

the whole set of instances provided in OpM LIB benchmark. After some pre-

liminary testing, the termination condition of the algorithm, MAX ITER, is set

to p× 10 for each problem instance.

The obtained computational results are presented in Table 4 and Table 5

for instance lists A and B, respectively. BKS denotes the cost value of a best-250

known solution for each instance, taken from Herrán et al. (2018), Lin and Guan

(2018) and Mladenovic et al. (2019). ”Best” and ”Avg.” columns give the best

and average cost values obtained from the algorithm after 50 runs, respectively.

The column ”Dev.” lists the deviation of the average cost in percentage with

respect to the BKS values for each instance i, calculated as BKSi−Costi
BKSi

× 100.255

The column ”Succ.” gives how many times the algorithm reaches or exceeds

the BKS value. The column ”CV” corresponds to the coefficient of variation

and presents the relative standard deviation for each instance, calculated as

StandardDeviationi

Meani
× 100. The column ”#Eval.” provides the average number of

objective value change evaluations (including opening or closing calculations)260

required to reach the final solution per instance. Finally, the column ”T.(s)”

lists the average CPU times in seconds that were spent by the algorithm.

Table 4 reports the computational results of the algorithm for instance set A.

It is seen that the proposed algorithm has reached BKS value for all the instances

in terms of best cost values. In terms of average cost, the algorithm can achieve265

BKS values in 47 out of 72 instances. It is also seen that the average success

rate is approximately 43.13/50 and the average CV value is smaller than 0.02,

which reveals the robustness of the proposed algorithm. As another important

performance metric, the algorithm can achieve approximately 22 seconds of

CPU time on average.270

Similarly, Table 5 reports the computational results of the algorithm for in-

stance set B. It is seen that the general performance of the algorithm over this

set is akin to that of set A. More specifically, the algorithm has reached BKS

16

Table 4: Computational results for the instances in set A: boldface indicates that the cost of

a BKS is reached; * indicates that the cost of a BKS is improved.

Instance BKS Best Avg. Dev. Succ. CV #Eval. T. (s)

pmed17-p100A 4054 4054 4054.00 0.000 50 0.000 76492.72 4.58
pmed17-p25A 7317 7317 7317.00 0.000 50 0.000 20843.02 1.21
pmed17-p50A 5411 5411 5411.00 0.000 50 0.000 83391.44 2.28
pmed18-p100A 4220 4220 4220.00 0.000 50 0.000 103398.94 4.29
pmed18-p25A 7432 7432 7432.00 0.000 50 0.000 16460.56 1.10
pmed18-p50A 5746 5746 5746.00 0.000 50 0.000 50996.50 2.23
pmed19-p100A 4033 4033 4033.00 0.000 50 0.000 119121.52 5.01
pmed19-p25A 7020 7020 7020.00 0.000 50 0.000 13249.42 1.18
pmed19-p50A 5387 5387 5386.34 0.012 17 0.009 81452.96 2.20
pmed20-p100A 4063 4063 4063.00 0.000 50 0.000 98296.78 4.50
pmed20-p25A 7648 7648 7648.00 0.000 50 0.000 14289.88 1.16
pmed20-p50A 5872 5872 5872.00 0.000 50 0.000 56764.40 2.28
pmed21-p125A 4155 4155 4154.96 0.001 49 0.007 171923.60 12.49
pmed21-p31A 7304 7304 7304.00 0.000 50 0.000 41267.30 2.40
pmed21-p62A 5784 5784 5782.98 0.018 33 0.054 156273.30 5.57
pmed22-p125A 4358 4358 4353.82 0.096 24 0.097 194032.24 10.28
pmed22-p31A 7900 7900 7900.00 0.000 50 0.000 45491.78 2.49
pmed22-p62A 5995 5995 5995.00 0.000 50 0.000 103239.70 5.09
pmed23-p125A 4114 4114 4114.00 0.000 50 0.000 251046.64 11.85
pmed23-p31A 7841 7841 7841.00 0.000 50 0.000 20439.26 2.70
pmed23-p62A 5785 5785 5785.00 0.000 50 0.000 125620.42 5.61
pmed24-p125A 4091 4091 4091.00 0.000 50 0.000 206143.08 13.52
pmed24-p31A 7425 7425 7425.00 0.000 50 0.000 24486.12 2.41
pmed24-p62A 5528 5528 5528.00 0.000 50 0.000 106321.50 5.04
pmed25-p125A 4155 4155 4154.78 0.005 46 0.023 206411.28 13.19
pmed25-p31A 7552 7552 7552.00 0.000 50 0.000 19594.68 2.52
pmed25-p62A 5767 5767 5767.00 0.000 50 0.000 125726.40 5.88
pmed26-p150A 4341 4341 4340.30 0.016 35 0.026 323149.60 24.76
pmed26-p37A 8112 8112 8112.00 0.000 50 0.000 11636.98 5.17
pmed26-p75A 5789 5789 5789.00 0.000 50 0.000 192238.28 11.14
pmed27-p150A 4062 4062 4061.94 0.001 49 0.010 338674.76 25.51
pmed27-p37A 7556 7556 7556.00 0.000 50 0.000 61133.62 5.07
pmed27-p75A 5668 5668 5667.08 0.016 43 0.043 210397.54 11.23
pmed28-p150A 4099 4099 4099.00 0.000 50 0.000 282403.30 21.22
pmed28-p37A 7366 7366 7366.00 0.000 50 0.000 55894.68 5.10
pmed28-p75A 5681 5681 5681.00 0.000 50 0.000 184276.72 11.57
pmed29-p150A 4141 4141 4139.76 0.030 15 0.031 349982.56 25.91
pmed29-p37A 7404 7404 7404.00 0.000 50 0.000 73068.18 4.63
pmed29-p75A 5880 5880 5880.00 0.000 50 0.000 144484.92 11.23
pmed30-p150A 4385 4385 4385.00 0.000 50 0.000 265179.24 22.75
pmed30-p37A 7704 7704 7704.00 0.000 50 0.000 51690.10 4.50
pmed30-p75A 6189 6189 6186.50 0.040 25 0.041 195791.06 11.31
pmed31-p175A 4136 4136 4134.80 0.029 3 0.014 482716.36 48.94
pmed31-p43A 7424 7424 7424.00 0.000 50 0.000 86526.98 7.99
pmed31-p87A 5905 5905 5905.00 0.000 50 0.000 200912.32 20.23
pmed32-p175A 4242 4242 4241.62 0.009 38 0.017 399891.16 41.47
pmed32-p43A 7794 7794 7794.00 0.000 50 0.000 99056.42 8.17
pmed32-p87A 5925 5925 5924.60 0.007 49 0.048 282371.30 19.21
pmed33-p175A 4105 4105 4102.30 0.066 2 0.031 443629.54 42.85
pmed33-p43A 7598 7598 7598.00 0.000 50 0.000 89898.76 7.93
pmed33-p87A 5793 5793 5793.00 0.000 50 0.000 275727.56 18.65
pmed34-p175A 4287 4287 4287.00 0.000 50 0.000 438460.12 44.15
pmed34-p43A 7725 7725 7725.00 0.000 50 0.000 108860.76 8.12
pmed34-p87A 5849 5849 5847.08 0.033 31 0.042 262842.74 19.47
pmed35-p100A 5845 5845 5844.96 0.001 48 0.003 368679.06 34.67
pmed35-p200A 4007 4007 4005.36 0.041 15 0.034 656431.70 79.02
pmed35-p50A 7155 7155 7155.00 0.000 50 0.000 141758.88 13.36
pmed36-p100A 6461 6461 6461.00 0.000 50 0.000 269865.26 33.08
pmed36-p200A 4319 4319 4317.46 0.036 29 0.073 647564.28 73.98
pmed36-p50A 8179 8179 8179.00 0.000 50 0.000 125740.54 13.38
pmed37-p100A 6203 6203 6202.44 0.009 40 0.022 394641.12 31.54
pmed37-p200A 4593 4593 4590.42 0.056 22 0.063 688083.06 77.03
pmed37-p50A 7830 7830 7830.00 0.000 50 0.000 172276.30 11.73
pmed38-p112A 5915 5915 5914.42 0.010 39 0.022 470285.26 52.80
pmed38-p225A 4428 4428 4426.74 0.028 20 0.024 859027.60 129.24
pmed38-p56A 7432 7432 7432.00 0.000 50 0.000 141119.52 19.48
pmed39-p112A 5935 5935 5935.00 0.000 50 0.000 406560.94 52.29
pmed39-p225A 4369 4369 4368.62 0.009 31 0.011 819629.72 124.18
pmed39-p56A 7712 7712 7712.00 0.000 50 0.000 146126.50 20.75
pmed40-p112A 6272 6272 6271.90 0.002 45 0.005 445914.72 49.43
pmed40-p225A 4572 4572 4570.66 0.029 7 0.021 857585.62 124.02
pmed40-p56A 8211 8211 8211.00 0.000 50 0.000 173055.64 19.70
Avg. 5896.60 5896.60 5896.21 0.008 43.13 0.011 225389.12 21.96

17

Table 5: Computational results for the instances in set B: boldface indicates that the cost of

a BKS is reached; * indicates that the cost of a BKS is improved.

Instance BKS Best Avg. Dev. Succ. CV # Eval. T. (s)

pmed17-p100B 3992 3992 3992.00 0.000 50 0.000 75947.28 5.41
pmed17-p25B 6905 6905 6905.00 0.000 50 0.000 17580.46 1.11
pmed17-p50B 5563 5563 5563.00 0.000 50 0.000 73173.38 2.66
pmed18-p100B 4122 4122 4121.52 0.012 42 0.027 114919.06 4.29
pmed18-p25B 7662 7662 7662.00 0.000 50 0.000 24361.32 1.14
pmed18-p50B 5852 5852 5852.00 0.000 50 0.000 59247.56 2.28
pmed19-p100B 4016 4016 4016.00 0.000 50 0.000 95052.58 4.62
pmed19-p25B 6816 6816 6816.00 0.000 50 0.000 13700.66 1.05
pmed19-p50B 5423 5423 5423.00 0.000 50 0.000 64291.10 2.37
pmed20-p100B 4067 4067 4067.00 0.000 50 0.000 135298.72 4.60
pmed20-p25B 7349 7349 7349.00 0.000 50 0.000 12944.18 1.12
pmed20-p50B 5665 5665 5665.00 0.000 50 0.000 51935.52 2.26
pmed21-p125B 4033 4033 4032.72 0.007 47 0.036 212941.32 11.73
pmed21-p31B 7331 7331 7331.00 0.000 50 0.000 29192.56 2.61
pmed21-p62B 5870 5870 5870.00 0.000 50 0.000 86841.44 5.75
pmed22-p125B 4338 4338 4336.88 0.026 23 0.026 243202.30 11.79
pmed22-p31B 7695 7695 7695.00 0.000 50 0.000 22269.88 2.55
pmed22-p62B 6259 6259 6259.00 0.000 50 0.000 76628.88 6.05
pmed23-p125B 4095 4095 4095.00 0.000 50 0.000 189044.66 11.22
pmed23-p31B 7137 7137 7137.00 0.000 50 0.000 47420.34 2.37
pmed23-p62B 5724 5724 5724.00 0.000 50 0.000 101162.88 5.27
pmed24-p125B 4072 4072 4072.00 0.000 50 0.000 222665.58 12.54
pmed24-p31B 7190 7190 7190.00 0.000 50 0.000 40677.54 2.28
pmed24-p62B 5752 5752 5750.54 0.025 47 0.102 129046.74 5.43
pmed25-p125B 4233 4233 4230.84 0.051 29 0.063 181880.46 11.48
pmed25-p31B 7552 7552 7552.00 0.000 50 0.000 51615.12 2.66
pmed25-p62B 5692 5692 5691.80 0.004 49 0.025 133719.30 5.91
pmed26-p150B 4173 4173 4173.00 0.000 50 0.000 347892.78 26.28
pmed26-p37B 7643 7643 7643.00 0.000 50 0.000 50942.76 4.86
pmed26-p75B 5923 5923 5923.00 0.000 50 0.000 157197.62 11.72
pmed27-p150B 4144 4144 4143.92 0.002 49 0.014 314088.52 26.25
pmed27-p37B 7448 7448 7448.00 0.000 50 0.000 54127.20 5.05
pmed27-p75B 5844 5844 5844.00 0.000 50 0.000 190412.72 12.64
pmed28-p150B 4069 4069 4068.88 0.003 44 0.008 339728.82 25.65
pmed28-p37B 7388 7388 7388.00 0.000 50 0.000 44762.26 4.99
pmed28-p75B 5642 5642 5639.88 0.038 36 0.066 216554.46 11.46
pmed29-p150B 4157 4157 4157.00 0.000 50 0.000 300338.42 23.76
pmed29-p37B 7529 7529 7529.00 0.000 50 0.000 53743.08 4.96
pmed29-p75B 5709 5709 5709.00 0.000 50 0.000 204382.20 11.41
pmed30-p150B 4313 4313 4312.84 0.004 47 0.016 377042.88 25.69
pmed30-p37B 8048 8048 8048.00 0.000 50 0.000 37828.80 4.72
pmed30-p75B 6041 6041 6041.00 0.000 50 0.000 185069.42 10.60
pmed31-p175B 4138 4138 4137.64 0.009 49 0.062 448719.04 44.46
pmed31-p43B 7320 7320 7320.00 0.000 50 0.000 101406.82 8.15
pmed31-p87B 5621 5621 5617.52 0.062 19 0.057 312222.62 19.87
pmed32-p175B 4244 4247* 4242.00 0.047 44 0.185 435546.82 43.00
pmed32-p43B 7899 7899 7899.00 0.000 50 0.000 79251.30 7.94
pmed32-p87B 5852 5852 5845.64 0.109 16 0.082 317744.18 18.89
pmed33-p175B 4156 4156 4154.72 0.031 35 0.053 475575.40 44.39
pmed33-p43B 7611 7611 7611.00 0.000 50 0.000 113690.78 7.48
pmed33-p87B 5840 5840 5838.98 0.017 33 0.028 321927.26 18.88
pmed34-p175B 4270 4270 4270.00 0.000 50 0.000 417589.12 47.33
pmed34-p43B 7514 7514 7514.00 0.000 50 0.000 72416.52 8.18
pmed34-p87B 5857 5857 5855.92 0.018 29 0.023 309946.88 19.34
pmed35-p100B 5639 5639 5639.00 0.000 50 0.000 349795.94 31.02
pmed35-p200B 4109 4109 4108.36 0.016 27 0.022 671362.92 76.70
pmed35-p50B 7570 7570 7570.00 0.000 50 0.000 103358.34 14.41
pmed36-p100B 6219 6219 6215.80 0.051 25 0.055 417711.82 31.90
pmed36-p200B 4319 4321* 4318.46 0.013 31 0.036 613311.64 67.68
pmed36-p50B 8144 8144 8144.00 0.000 50 0.000 125580.14 13.30
pmed37-p100B 6211 6212* 6209.16 0.030 6 0.032 417010.04 30.90
pmed37-p200B 4609 4609 4608.60 0.009 40 0.018 621983.56 81.69
pmed37-p50B 8379 8379 8379.00 0.000 50 0.000 91141.04 12.57
pmed38-p112B 5949 5949 5948.56 0.007 39 0.014 537907.22 52.92
pmed38-p225B 4446 4446 4443.46 0.057 23 0.073 834419.68 136.40
pmed38-p56B 7535 7535 7535.00 0.000 50 0.000 171157.68 20.89
pmed39-p112B 6198 6198 6198.00 0.000 50 0.000 450664.08 53.22
pmed39-p225B 4266 4267* 4264.04 0.046 11 0.052 763636.10 125.43
pmed39-p56B 7625 7625 7625.00 0.000 50 0.000 181289.80 20.67
pmed40-p112B 6200 6200 6199.68 0.005 38 0.011 557014.60 49.06
pmed40-p225B 4525 4532* 4529.82 -0.107 44 0.073 904935.12 115.71
pmed40-p56B 8022 8022 8022.00 0.000 50 0.000 192937.04 19.22
Avg. 5871.71 5871.90 5871.28 0.008 44.06 0.017 233223.98 22.00

18

value for all the instances in terms of best costs. Also, the proposed algorithm

could produce new best solutions for the 5 instances, namely pmed32-p175B,275

pmed36-p200B, pmed37-p100B, pmed39-p225B, and pmed40-p225B. Further-

more, in terms of average cost, it can achieve BKS values in 46 out of 72 in-

stances. In addition, the average success rate is approximately 44.06/50, the

average CV value is smaller than 0.02, and the average CPU time is around

22 seconds. Overall, it can be concluded that the proposed IG algorithm can280

produce high-quality solutions for OpM problems in a reasonable time.

4.2. Comparison with state-of-the-art

In this section, the proposed IG algorithm is compared with state-of-the-art

algorithms for the OpM. For this purpose, the following algorithms in literature

have been selected: standard Branch and Cut (BC) and Tabu Search based BC285

(XTS) from Belotti et al. (2007); Greedy Randomized Adaptive Search Pro-

cedure (GRASP) from Colmenar et al. (2016); Hybrid Binary Particle Swarm

Optimization (HBPSO) from Lin and Guan (2018), parallel Variable Neighbor-

hood Search (P-VNS) from Herrán et al. (2018) and basic Variable Neighbor-

hood Search (VNS) from Mladenovic et al. (2019).290

The computational results of the algorithms BC, XTS, GRASP, and P-VNS

are presented in Herrán et al. (2018) for both of the instance sets A and B,

and produced by the same computer with the configuration of Intel Core i5

660, 3.3 GHz. Because average and best costs are not explicitly stated in com-

putational results for these algorithms, it is assumed that the reported results295

are based on a single run. On the other hand, the results of VNS have been

presented in both best and average costs (for 30 runs), produced by the com-

puter with the configuration of Intel Xeon E7 4820 CPU, 2.00 GHz. As for

HBPSO, the results have only been presented for instance set A, reported in

both best and average costs (for 40 runs), and produced by the computer with300

the configuration of AMD A4-5300, 3.4 GHz. To make a fair comparison of

running times between the algorithms, the reported CPU times have been nor-

malized according to their single thread performance scores that are obtained

19

from https://www.cpubenchmark.net.

Comparison of the proposed IG algorithm with other algorithms over the305

combined instance sets of A and B is given in Table 6. For HBPSO, computa-

tional results are only available for instance set A, therefore, a second compari-

son that has been made with this algorithm is given in Table 7. It can be seen

from the tables that the proposed algorithm outperforms BC, XTS, GRASP,

and VNS implementations in terms of average cost, best cost (if available) and310

running time performances. Although average CPU times of HBPSO and IG

are close with each other, average and best cost performances of the IG is bet-

ter. P-VNS is the only algorithm that produces better average cost (5884.0)

than that of the proposed (5883.7), but this difference is so small when the av-

erage CPU times of both algorithms are considered (31.5 vs. 21.98). Moreover,315

compared to P-VNS, which has a parallel search mechanism that requires the

design of solution exchange strategies, the proposed IG algorithm has a simpler

algorithmic structure with ease of implementation.

Table 6: Comparison of the proposed IG algorithm with other algorithms over the combined

instance sets of A and B.

BC XTS GRASP P-VNS VNS IG

Avg. Cost 5775.7 5815.8 5881.0 5884.0 5878.3 5883.7

Best Cost N/A N/A N/A N/A 5884.0 5884.3

Time (sec.) 5338.9 333.8 432.0 48.7 199.3 21.98

CPU score 1.394 1.394 1.394 1.394 1.162 2.155

Scale 0.647 0.647 0.647 0.647 0.539 1.000

Time (Scaled) 3453.6 215.9 279.4 31.5 107.5 21.98

Table 7: Comparison of the proposed IG algorithm with HBPSO over the instance set A.

HBPSO IG

Avg. Cost 5894.7 5896.2

Best Cost 5896.5 5896.6

Time (sec.) 38.9 21.96

CPU score 1.241 2.155

Scale 0.576 1.000

Time (Scaled) 22.4 21.96

20

5. Conclusion

In this study, an optimization algorithm based on Iterated Greedy (IG) meta-320

heuristic has been proposed to solve the obnoxious p-median problem (OpM).

In the construction phase of the IG algorithm Greedy Randomized Adaptive

Search Procedure based selection criterion has been used. In addition, a com-

posite local search method has been developed using RLS1 and RLS2, which

were individually and successfully applied to solve the OpM before. The perfor-325

mance of the proposed algorithm was tested on a common benchmark consisting

of 144 problem instances.

Experimental work shows that the proposed IG algorithm is highly effective

for solving the OpM. The results indicate that, based on the set of selected

instances, the proposed method outperforms most of the state-of-the-art coun-330

terparts including XTS, GRASP, VNS, and HBPSO implementations in terms

of both average cost and running time. While P-VNS is the only method that

exceeds the average cost performance of the developed IG algorithm, the cost

difference between the two algorithms is very small and the proposed algorithm

works much faster.335

Future research might concentrate on the application of adaptive parameter

control techniques to the IG algorithm so that the algorithm adapts itself better

for each problem instance. Moreover, the running time of the algorithm can be

further decreased by the parallel evaluation of multiple solution candidates.

Funding340

This research did not receive any specific grant from funding agencies in the

public, commercial, or not-for-profit sectors.

Conflicts of interest

Declarations of interest: none

21

References345

Arroyo, J.E.C., Leung, J.Y.T., Tavares, R.G., 2019. An iterated greedy algo-

rithm for total flow time minimization in unrelated parallel batch machines

with unequal job release times. Eng. Appl. of Artif. Intell. 77, 239–254.

Beasley, J.E., 1990. OR-Library: Distributing Test Problems by Electronic Mail.

J. of the Oper. Res. Soc. 41, 1069–1072. URL: https://www.tandfonline.350

com/doi/full/10.1057/jors.1990.166, doi:10.1057/jors.1990.166.

Belotti, P., Labbé, M., Maffioli, F., Ndiaye, M.M., 2007. A branch-

and-cut method for the obnoxious p-median problem. 4OR 5, 299–314.

URL: http://link.springer.com/10.1007/s10288-006-0023-3, doi:10.

1007/s10288-006-0023-3.355

Bouamama, S., Blum, C., Boukerram, A., 2012. A population-based iterated

greedy algorithm for the minimum weight vertex cover problem. Appl. Soft

Comput. 12, 1632–1639.

Church, R.L., Garfinkel, R.S., 1978. Locating an obnoxious facility on a network.

Transp. sci. 12, 107–118.360

Colmenar, J.M., Greistorfer, P., Mart́ı, R., Duarte, A., 2016. Advanced Greedy

Randomized Adaptive Search Procedure for the Obnoxious p-Median prob-

lem. Eur. J. of Oper. Res. doi:10.1016/j.ejor.2016.01.047.

Current, J., Daskin, M., Schilling, D., 2002. Discrete network location models,

in: Drezner, Zvi, H.H.W. (Ed.), Facility location: Applications and theory.365

Springer-Verlag Berlin Heidelberg, pp. 81–118.

Dell’Amico, M., Lodi, A., Maffioli, F., 1999. Solution of the cumulative assign-

ment problem with a well-structured tabu search method. J. of Heuristics 5,

123–143.

Eberhart, R., Kennedy, J., 1995. A new optimizer using particle swarm theory,370

in: MHS’95. Proceedings of the Sixth International Symposium on Micro

Machine and Human Science, Ieee. pp. 39–43.

22

https://www.tandfonline.com/doi/full/10.1057/jors.1990.166
https://www.tandfonline.com/doi/full/10.1057/jors.1990.166
https://www.tandfonline.com/doi/full/10.1057/jors.1990.166
http://dx.doi.org/10.1057/jors.1990.166
http://link.springer.com/10.1007/s10288-006-0023-3
http://dx.doi.org/10.1007/s10288-006-0023-3
http://dx.doi.org/10.1007/s10288-006-0023-3
http://dx.doi.org/10.1007/s10288-006-0023-3
http://dx.doi.org/10.1016/j.ejor.2016.01.047

Farahani, R.Z., Hekmatfar, M., 2009. Facility location: concepts, models, algo-

rithms and case studies. Springer.

Feo, T.A., Resende, M.G.C., 1995. Greedy Randomized Adaptive Search Pro-375

cedures. J. of Glob. Optim. 6, 109–133. URL: http://link.springer.com/

10.1007/BF01096763, doi:10.1007/BF01096763.

Garćıa-Mart́ınez, C., Rodriguez, F.J., Lozano, M., 2014. Tabu-enhanced it-

erated greedy algorithm: a case study in the quadratic multiple knapsack

problem. Eur. J. of Oper. Res. 232, 454–463.380

Herrán, A., Colmenar, J.M., Mart́ı, R., Duarte, A., 2018. A parallel vari-

able neighborhood search approach for the obnoxious p-median problem. Int.

Trans. in Oper. Res. URL: http://doi.wiley.com/10.1111/itor.12510,

doi:10.1111/itor.12510.

Karabulut, K., Tasgetiren, M.F., 2014. A variable iterated greedy algorithm for385

the traveling salesman problem with time windows. Inf. Sci. 279, 383–395.

Lin, G., Guan, J., 2018. A hybrid binary particle swarm optimization for the

obnoxious p-median problem. Inf. Sci. 425, 1–17.

López-Ibáñez, M., Dubois-Lacoste, J., Cáceres, L.P., Birattari, M., Stützle, T.,

2016. The irace package: Iterated racing for automatic algorithm configura-390

tion. Operations Research Perspectives 3, 43–58.

Lourenço, H.R., Martin, O.C., Stützle, T., 2003. Iterated local search, in: Hand-

book of metaheuristics. Springer, pp. 320–353.

Mitchell, J.E., 2002. Branch-and-cut algorithms for combinatorial optimization

problems. Handb. of appl. optim. 1, 65–77.395

Mladenovic, N., Alkandari, A., Pei, J., Todosijevi, R., Pardalos, P.M., 2019.

Less is more approach: basic variable neighborhood search for the obnoxious

p-median problem. Int. Trans. in Oper. Res. URL: https://onlinelibrary.

wiley.com/doi/abs/10.1111/itor.12646, doi:10.1111/itor.12646.

23

http://link.springer.com/10.1007/BF01096763
http://link.springer.com/10.1007/BF01096763
http://link.springer.com/10.1007/BF01096763
http://dx.doi.org/10.1007/BF01096763
http://doi.wiley.com/10.1111/itor.12510
http://dx.doi.org/10.1111/itor.12510
https://onlinelibrary.wiley.com/doi/abs/10.1111/itor.12646
https://onlinelibrary.wiley.com/doi/abs/10.1111/itor.12646
https://onlinelibrary.wiley.com/doi/abs/10.1111/itor.12646
http://dx.doi.org/10.1111/itor.12646

Mladenović, N., Hansen, P., 1997. Variable neighborhood search. Comput. &400

oper. res. 24, 1097–1100.

Nucamendi-Guillén, S., Angel-Bello, F., Mart́ınez-Salazar, I., Cordero-Franco,

A.E., 2018. The cumulative capacitated vehicle routing problem: New formu-

lations and iterated greedy algorithms. Expert Syst. with Appl. 113, 315–327.

Ruiz, R., Stützle, T., 2007. A simple and effective iterated greedy algo-405

rithm for the permutation flowshop scheduling problem. Eur. J. of Oper.

Res. 177, 2033–2049. URL: https://www.sciencedirect.com/science/

article/pii/S0377221705008507, doi:10.1016/J.EJOR.2005.12.009.

Stützle, T., Ruiz, R., 2018. Iterated Greedy. Springer International

Publishing, Cham. pp. 547–577. URL: https://doi.org/10.1007/410

978-3-319-07124-4_10, doi:10.1007/978-3-319-07124-4_10.

Tamir, A., 1991. Obnoxious Facility Location on Graphs. SIAM J. on Discret.

Math. 4, 550–567. URL: http://epubs.siam.org/doi/10.1137/0404048,

doi:10.1137/0404048.

Wolpert, D.H., Macready, W.G., et al., 1997. No free lunch theorems for opti-415

mization. IEEE transactions on evolutionary computation 1, 67–82.

24

https://www.sciencedirect.com/science/article/pii/S0377221705008507
https://www.sciencedirect.com/science/article/pii/S0377221705008507
https://www.sciencedirect.com/science/article/pii/S0377221705008507
http://dx.doi.org/10.1016/J.EJOR.2005.12.009
https://doi.org/10.1007/978-3-319-07124-4_10
https://doi.org/10.1007/978-3-319-07124-4_10
https://doi.org/10.1007/978-3-319-07124-4_10
http://dx.doi.org/10.1007/978-3-319-07124-4_10
http://epubs.siam.org/doi/10.1137/0404048
http://dx.doi.org/10.1137/0404048

	Introduction
	The background
	Problem formulation
	Basic iterated greedy algorithm

	The proposed iterated greedy algorithm for the OpM
	Pseudocode of the generic algorithm
	Greedy selection
	Composite local search
	Solution structure and evaluation of the objective function

	Experimental work
	Preliminary experiments
	Parameter setting
	The effectiveness of the composite local search
	Computational results over the whole set of instances

	Comparison with state-of-the-art

	Conclusion

