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Abstract This study proposes a novel hybrid algo-

rithm based on Iterated Local Search (ILS) and Ran-

dom Variable Neighborhood Descent (RVND) meta-

heuristics for the purpose of solving the Capacitated

Vehicle Routing Problem (CVRP). The main contri-

bution of this work is that two new search rules have

been developed for multi-starting and adaptive accep-

tance strategies, and applied together to enhance the

power of the algorithm. A comprehensive experimental

work has been conducted on two common CVRP bench-

marks. Computational results demonstrate that both

multi-start and adaptive acceptance strategies provide

a significant improvement on the performance of pure

ILS-RVND hybrid. Experimental work also shows that

our algorithm is highly effective in solving CVRP and

comparable with state-of-the-art.

Keywords Capacitated vehicle routing problem ·
Iterated local search · Random variable neighborhood

descent · Adaptive acceptance function · Multi-start ·
Hybrid metaheuristic

1 Introduction

Transportation and logistics play an important role in

the organization of many real-world operations such as
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supply chain management, shipment delivery and dis-

tribution of a wide variety of goods. However, a major

problem with these kinds of operations is that it is a

daunting task to produce an efficient and acceptable

route plan due to their complex nature. By addressing

this issue, Vehicle Routing Problem (VRP) has been an

object of research since it was formulated by Dantzig

and Ramser (1959) as the truck dispatching problem.

The goal of the VRP is to find a set of routes for

a fleet of vehicles which are used for carrying items

to customers. The basic version of it is called Capaci-

tated VRP (CVRP) which implies an identical carrying

capacity on vehicles that total amount of demands in

one route cannot exceed a predefined limit. Many other

VRP variants have been derived to meet different real-

world requirements. For example, when time window

constraints are applied to the delivery schedules, the

problem turns into VRP with Time Windows. More-

over, when pickup operations are carried out in addition

to deliveries, the problem turns into VRP with Pickup

and Delivery. Regardless of their properties, these vari-

ants are basically built on top of CVRP. Therefore, de-

veloping new efficient methods for CVRP is also bene-

ficial for others.

CVRP is an NP-hard optimization problem, and it

is one of the best-known problems in the field of combi-

natorial optimization. For larger problem sizes, it takes

a very long time to produce an optimal solution by ex-

act algorithms. Therefore, as in other hard optimization

problems, heuristic and metaheuristic methods are pre-

ferred to obtain good results within a reasonable time.

Metaheuristics offer a generic framework to the overall

optimization process and usually require and manage

several low-level heuristics that are specialized for the

problem being solved. Although many studies that use
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various types of metaheuristics for VRP, new contribu-

tions in this subject are still highly valued.

Iterated Local Search (ILS) (Stützle 1998) is one of

the simple yet efficient metaheuristics for solving com-

binatorial optimization problems and it has been suc-

cessfully applied to VRP (see Section 2 for the relevant

literature). However, the performance of ILS is highly

dependent on the local search method used. Consider-

ing CVRP, several local search algorithms having differ-

ent characteristics are available, and it is better to com-

bine more than one methods to benefit from them all.

On the other hand, managing such multiple algorithms

requires a higher level search strategy; so it is prefer-

able to use a metaheuristic like Variable Neighborhood

Descent (Hansen and Mladenović 2001) (VND). When

there is no significant order between the managed al-

gorithms, the randomized version of VND, or RVND,

can be used. Due to the many sub-algorithms it con-

tains, RVND exhibits very high exploitation behavior

and it is likely to be trapped in local optima. Contrarily,

ILS offers more randomized search with its perturbation

phase and it has high exploration capability. Together

these two algorithms are complementary and hybridiza-

tion of the algorithms is expected to outperform their

individual performances.

In this study, we propose a novel ILS-RVND hybrid

metaheuristic that local search part of the ILS is man-

aged by RVND. RVND itself consists of 6 low-level lo-

cal search algorithms that are based on an efficient and

fast search method called sequential search (Irnich et al.

2006). As the main contribution of this work, the per-

formance of the ILS-RVND hybrid is further improved

by adapting both the multi-starting rule and adaptive

acceptance function to CVRP for the first time in the

literature. These two strategies contribute to the explo-

ration behavior of the general search process and help

algorithm escape from local optima.

The rest of this paper is organized in the follow-

ing way. Section 2 summarizes the relevant literature

of this study. Section 3 first defines the CVRP problem

and then gives the definition of ILS and RVND which

are the two main algorithms that have been used in

this work. The proposed algorithm and its components

are detailed in Section 4. Then Section 5 presents the

experimental work that has been conducted to analyze

the performance of the proposed algorithm using com-

mon benchmark problems. Finally, Section 6 concludes

the paper.

2 Related work

Dantzig and Ramser (1959) were first formulated Vehi-

cle Routing Problem (VRP) as Truck Dispatch Prob-

lem. Since then many variants of this problem have been

solved such as VRP with time windows (Nalepa and

Blocho 2016), VRP with stochastic demands (Gee et

al. 2016), VRP with simultaneous delivery and pick-up

(Dethloff 2001), heterogeneous fleet VRP (Penna et al.

2013), multi-depot VRP (Agrawal et al. 2017) and open

VRP (Fu et al. 2005).

Since VRP is an NP-hard problem (Lenstra and

Kan 1981), no exact algorithm can solve it in poly-

nomial time. Hence, metaheuristic algorithms are often

applied to produce high-quality solutions in a reason-

able time.

In recent years, there has been an increasing amount

of literature on multi-start metaheuristic solutions for

the VRP. In one of these studies, Subramanian et al.

(2013) proposed a hybrid algorithm combining the Set

Partitioning (SP) formulation with an ILS-RVND for a

class of Vehicle Routing Problems with homogeneous

fleet. Michallet et al. (2014) developed a multi-start

ILS algorithm for the periodic vehicle routing prob-

lem with time window. The other two studies that em-

ployed multi-start ILS were carried out by Rivera et al.

(2015) and Sassi et al. (2015). The former addressed

the multi-trip cumulative capacitated VRP while the

latter dealt with the VRP with mixed fleet of conven-

tional and heterogeneous electric vehicles. Using Par-

ticle Swarm Optimization, Psychas et al. (2017) de-

veloped a Parallel Multi-Start algorithm to solve the

Multi-objective Route-based Fuel Consumption Vehi-

cle Routing problem. Another example is (Molina et

al. 2018) in which the authors designed a Multi-start

metaheuristic algorithm with an intelligent neighbor-

hood selection method for the multi-objective humani-

tarian vehicle routing problems.

As for adaptive acceptance methods, there has been

a limited amount of research that addresses the VRP.

Tarantilis et al. (2002) proposed an adaptive algorithm

based on Threshold Accepting (TA) method of Dueck

and Scheuer (1990), which is a simpler variant of well-

known Simulated Annealing metaheuristic (Kirkpatrick

et al. 1983). Alabas-Uslu and Dengiz (2011) introduced

a self-adaptive local search algorithm based on adap-

tive acceptance parameter, which was adjusted by the

number of iterations passed and the amount of improve-

ment over the starting solution. This strategy was later

modified and adopted by Avci and Topaloglu (2015) as

a part of the VND based algorithm to solve the VRP

with simultaneous pick-up and delivery.

Together, these studies outline that multi-start and

adaptive acceptance search strategies are preferable for

solving the VRP. However, to the best of our knowledge,

this is the first paper that combines both strategies to

improve the overall solution quality. The main reason
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why we address the CVRP in this work is that it is the

basic version of the problem, so the developed methods

will have a great potential to be adapted for the other

VRP variants.

3 The background

3.1 Problem definition

The definition of the CVRP can be given as follows:

Let G = (V,E) is an undirected and complete graph,

where, V = {0, 1, 2, ..., n} is the vertex set and E =

{(i, j) | i, j ∈ V ∧ i 6= j} is the edge set. In set V ,

the vertex 0 represents the depot, and the vertices that

are numbered from 1 to n represent the customers.

Each customer has a demand q and each vehicle has an

identical capacity Q. A route R = (0, v1, v2, · · · , vl, 0)

starts from and end at the depot by visiting the l cus-

tomers v1, v2, · · · , vl in order, and it is capacity feasible

if
∑l

i=1 qvi ≤ Q. The weight of an edge (i, j) ∈ E is

calculated as a Euclidean distance between the vertices

i and j, and is denoted by di,j . Hence, the total distance

of a route is calculated by D = d0,v1 +
∑l−1

i=1(dvi,vi+1
) +

dvl,v0 .

A CVRP solution consists of k ≥ 1 feasible routes

that each customer is visited once in one of these routes.

The objective is to minimize the total route lengths of a

solution. Moreover, in some of the problem instances, a

predefined service time s is considered during customer

visits. In this case, it is expected that the summation

of route distance and service time does not exceed a

predefined limit L, so, the inequality D +
∑l

i=1 s ≤ L

is satisfied for each route in a solution.

3.2 Iterated local search

Iterated Local Search (ILS) (Stützle 1998) is one of the

main metaheuristic algorithms for optimization prob-

lems. As given in Algorithm 1, it is based on local

search and perturbation steps that are applied repeti-

tively one after another until the termination condition

is satisfied. Local search procedure uses one or more

neighborhood structures, which are dependent on the

problem to be solved, for modifying the current solution

systematically to find a better one. On the other hand,

the aim of the perturbation step is to escape from local

optimum by changing current solution in a random way

so that the search process continues from a new point

in the solution space. Generally, a random move for a

perturbation is generated using a larger neighborhood

structure than that of used in a local search.

Algorithm 1: ILS

output: S∗

1 S ← constructInitialSolution();
2 S∗ ← localSearch(S);
3 while termination condition is not satisfied do
4 S′ ← perturb(S∗);
5 S′′ ← localSearch(S′);
6 if S′′ is better than S∗ then
7 S∗ ← S′′;
8 end
9 if acceptance(S′′) then

10 S ← S′′;
11 end

12 end

3.3 Random variable neighborhood descent

Variable neighborhood descent (VND) is a determin-

istic metaheuristic which is used for local search. The

classical version of this algorithm (Hansen and Mlade-

nović 2001) uses a set of neighborhood structures N =

{N1, · · · , Nk} sequentially until the solution S becomes

locally optimum for each of them. When the order of

neighborhoods are decided in a random way, the al-

gorithm is called RVND (see Algorithm 2). From the

algorithm, we can see that the counter n is increased

by one to try next neighbor if the current solution is

not improved. Otherwise, the better solution is found,

and n is set to 1 so that the cycle restarts for the newly

accepted solution. When none of the neighbors make an

improvement in succession, which implies n > k, the al-

gorithm returns the current solution. The only parame-

ter of the algorithm is bi which determines whether the

best improving solution is searched for a given neigh-

borhood.

Algorithm 2: RVND

input : S, N
output : S
parameter: bi

1 {ij}kj=1 ← randomIndexes(1, k);

2 n← 1;
3 while n ≤ k do
4 if bi=true then
5 S′ ← bestImprovingSolution(Nin(S));
6 else
7 S′ ← firstImprovingSolution(Nin(S));
8 end
9 if S′ is better than S then

10 S ← S′;
11 n← 1;

12 else
13 n← n+ 1;
14 end

15 end
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4 The proposed algorithm

In the proposed algorithm, called MA ILS-RVND, we

hybridize multi-start ILS and RVND metaheuristics in

such a way that the local search part of ILS is managed

by the RVND. For the acceptance function, we set an

adaptive threshold that allows unimproved solutions to

be accepted to some degree. As for the multi-start strat-

egy, we set a restart limit that the search process starts

from scratch when the number of successive unimproved

solutions reaches it.

The details of the MA ILS-RVND can be seen in

Algorithm 3. In the initialization stage, restart limit

(rstLimit) and perturbation size (pSize) values are

given as to be proportional to the n and
√
n, respec-

tively, where n is the number of customers. After the

starting solution (Sz) is constructed using the parallel

version of Clarke and Wright (1964) heuristic, it is as-

signed as an initial value of the current solution (S),

best solution after restart (S∗) and the overall best so-

lution (Sbest). Then the three counters, which are the

iteration counter from the beginning (iterCounter), the

iteration count after the latest restart (i), the succes-

sive unimproved solutions after the latest restart, are

set to zero.

The main loop of the algorithm continues until the

maximum number of iterations is reached. In each itera-

tion, firstly, the current solution S is randomly changed

by the perturb procedure, and the S′ is obtained. Sec-

ondly, the local search procedure takes S′ as an input

and outputs the solution S′′. Then, three counters are

increased by one, and the algorithm moves on the ac-

ceptance stage.

If the fitness of the S′′ is smaller than the S, it is

directly accepted as a new current solution. If S′′ is

also smaller than S∗, it is updated, and the rstCount

is reset. Moreover, if S′′ improves the overall best solu-

tion since the beginning of the algorithm, Sbest is also

updated. On the other hand, if the fitness of the S′′ is

not smaller than the S, it can be accepted in case of its

fitness is equal to or below the threshold which is cal-

culated as the multiplication of θ and the f(S∗). The

value of θ is dependent on α1 and α2 that the former in-

creases as the S∗ is improved and the latter decreases as

the i increases. This adaptive threshold based solution

acceptance mechanism is taken from SALS algorithm

of Alabas-Uslu and Dengiz (2011) and adapted for our

algorithm.

At the last stage of each iteration, it is checked

whether the number of successive unimproved solutions

reaches its limit. In case of limit exceed, S and S∗ are

reset back to the starting solution. Also the counters i

Algorithm 3: Multi-start ILS-RVND algorithm

with adaptive acceptance (MA ILS-RVND)

input : MAX ITER
output : Sbest

parameter: pFactor,rstFactor,k,bi
1 pSize← bpFactor ∗

√
nc;

2 rstLimit← brstFactor ∗ nc;
3 Sz ← initialSolution() ; . using Clarke and Wright

heuristic

4 S ← S∗ ← Sbest ← Sz;
5 iterCounter ← 0;
6 i← 0;
7 rstCounter ← 0;
8 while iterCounter < MAX ITER do
9 S′ ← perturbation(S, pSize) ; . using random

CROSS-Exchange

10 S′′ ← localSearch(S′, k, bi) ; . using RVND

11 rstCounter ← rstCounter + 1;
12 iterCounter ← iterCounter + 1;
13 i← i+ 1;
14 if f(S′′) < f(S) then
15 S ← S′′;
16 if f(S′′) < f(S∗) then
17 S∗ ← S′′;
18 rstCounter ← 0;
19 if f(S′′) < f(Sbest) then
20 Sbest ← S′′;
21 end

22 end

23 else
24 α1 ← f(S∗)/f(Sz);
25 α2 ← 1/i;
26 θ ← 1 + α1 ∗ α2;
27 if f(S′′) ≤ θ ∗ f(S∗) then . accept

unimproved solution

28 S ← S′′;
29 end

30 end
31 if rstCounter = rstLimit then . restart

search

32 S ← Sz;
33 S∗ ← Sz;
34 i← 0;
35 rstCounter ← 0;

36 end

37 end

and rstCounter are set back to the zero. Therefore, the

algorithm restarts by the next iteration.

The parameters of the MA ILS-RVND are listed be-

low. The first two parameters are not directly used in

the algorithm; instead, they are designed as factors. The

rationale behind this idea is that pSize and rstLimit

are dependent on the size of a problem. In the pre-

liminary experiments we have seen that the pSize and

rstLimit are dependent on
√
n and n, respectively.

– pFactor is used to determine the perturbation size

(pSize) which is dependent on the number of cus-

tomers.
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X1 X1' Y1 Y1'

X2 X2' Y2 Y2'

X1 X1' Y1 Y1'

X2 X2' Y2 Y2'
}segment1

}segment2

Fig. 1 The CROSS-Exchange move. Rectangle denotes the
depot node, whereas circle denotes a customer node.

– rstFactor is used to determine the restart limit

(rstLimit) which is dependent on the number of

customers.

– k is used to limit segment lengths in local search for

Or − opt and string − exchange neighborhoods.

– bi is used in the local search to decide which search

strategy is applied. If it is true, best improving strat-

egy is used, whereas if it is false, first improving

strategy is preferred.

4.1 Perturbation

We use CROSS-Exchange (CE) neighborhood structure

of Taillard et al. (1997) in the perturbation step of the

algorithm that two customer sequences, or segments,

are exchanged between two routes. Fig. 1 illustrates a

CE move that two nodes X1 and Y 1 are selected from

the first route, whereas two other nodes X2 and Y 2

are selected from the second route. After removing the

edges between these four customers and their succes-

sors, new edges (X1, X2′), (X2, X1′), (Y 1, Y 2′) and

(Y 2, Y 1′) are introduced to complete exchange oper-

ation. One of the special cases of CE is Or-opt move

that occurs when one of the segments is empty (e.g.,

X1 = Y 1 or X2 = Y 2). The other case is 2-opt* that

occurs when both the Y 1 and Y 2 are located just before

the depot.

In order to be used as a perturbation procedure, we

designed Algorithm 4 that makes random changes on

a given solution S based on CE move type. The role

of pSize in the algorithm is to limit the highest value

that segment lengths can take. The algorithm handles

3 different cases, namely exchange of two segments be-

tween R1 and R2, movement of a segment of R1 to R2

and movement of a segment of R2 to R1, that arise de-

pending on which nodes are selected from the routes.

In the case of two empty segments, there will be no

Algorithm 4: perturbation

1 S′ ← make a copy of S;
2 {R1, R2} ← select two different routes from S

randomly;
3 X1← select a node from R1 randomly (either depot

or customer);
4 X2← select a node from R2 randomly (either depot

or customer);
5 X1′ ← successor of X1;
6 X2′ ← successor of X2;
7 Set1 ← select up to pSize successors (only customers)

of X1;
8 Y 1← select a random node from {X1} ∪ Set1;
9 Set2 ← select up to pSize successors (only customers)

of X2;
10 Y 2← select a random node from {X1} ∪ Set2;
11 Y 1′ ← successor of Y 1;
12 Y 2′ ← successor of Y 2;
13 if X1 6= Y 1 and X2 6= Y 2 then . two segments

exchange

14 remove edges (X1, X1′), (Y 1, Y 1′), (X2, X2′) and
(Y 2, Y 2′);

15 add edges (X1, X2′), (X2, X1′), (Y 1, Y 2′) and
(Y 2, Y 1′);

16 else if X1 = Y 1 and X2 6= Y 2 then . a segment

move to R1
17 remove edges (X1, X1′), (X2, X2′) and (Y 2, Y 2′);
18 add edges (X2, Y 2′), (X1, X2′) and (Y 2, X1′);

19 else if X1 6= Y 1 and X2 = Y 2 then . a segment

move to R2
20 remove edges (X1, X1′), (Y 1, Y 1′) and (X2, X2′);
21 add edges (X1, Y 1′), (X2, X1′) and (Y 1, X2′);

22 else . no changes

23 go to step 2;
24 end
25 if S′ is both capacity feasible and distance feasible

then
26 return S′;
27 else
28 go to step 1;
29 end

change and the algorithm goes back to step 2 to try

different segments next time. After successfully apply-

ing random CE changes on a solution, the solution is

checked for both capacity and distance constraints. In

case of feasibility the perturbed solution S′ is returned,

otherwise, the algorithm returns back to step 1.

4.2 Local search

Local search is an important component in optimization

algorithms and plays a key role in exploitation. The aim

of the local search is to improve a given solution by

trying new solutions around its neighborhood, which

is dependent on a problem to be solved. Considering

the CVRP, it is not enough to use a single local search

algorithm, instead, several ones are employed together

to find better solutions.
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In this study, we use several improvement heuristics

based on the sequential search that has been presented

by Irnich et al. (2006) as a generic local search tech-

nique. This method eliminates the unpromising part

of neighborhoods, so, compared to the lexicographic

search, it can provide significant time savings especially

for large size problem instances. An implementation of

the algorithms that are designed by this technique is

not a trivial task and requires some specialized data

structures to be used. So, we followed the guidelines in

the original paper and made use of a giant tour for the

representation of CVRP solutions. An example CVRP

solution, which consists of k = 3 routes and n = 8 cus-

tomers and its giant tour representation are given in

Fig. 2. For the giant tour representation, all the routes

are linked in a circular way by adding k copies of the de-

pot between them. In order to distinguish between the

copies of the depot, the numbers (n+1, n+2, · · · , n+k)

are assigned to each of them.

We list below the neighborhoods that were employed

in the local search procedure. These neighborhoods are

managed by RVND (see Section 2 for details) that uses

the sequential search to find improving neighbors. Illus-

trations of move type for each neighborhood structure

are given in Fig. 3.

– 2-opt: inverts a node sequence giant tour by remov-

ing and adding two edges.

– special 2-opt*: splits a giant tour into two sub

tours by removing and adding two edges.

– Or-opt: relocates a node sequence of length at most

k.

– swap: swaps two nodes.

– string-exchange: exchanges two customer sequences

of length at most k by inverting their sequence. In

this implementation, depots are not allowed to be

in any sequences.

5 Experimental work

5.1 Experimental setting

The proposed MA ILS-RVND algorithm was implemented

in Java, and ran on a computer with the configuration

of Intel R© CoreTM i7 6700 3.40 GHz CPU using a single

core.

We used Christofides et al. (1979) dataset for pre-

liminary experiments because it is one of the most used

benchmarks in the literature and has moderate size

problem instances. The other computational experiments

and literature comparison were done using Uchoa et al.

(2017) dataset due to its comprehensive structure.

Table 1 The tuned parameter values of MA ILS-RVND per
benchmark set using irace

Parameter

Name

Tuning

Interval

Tuned for

Christofides

et al.

Tuned for

Uchoa

et al.

pFactor [0.25, 2.0] 0.54 1.04

rstFactor [1, 16] 8 9

k [2, 5] 4 4

bi (true, false) false false

For the purpose of parameter tuning, we used the

irace Package (López-Ibáñez et al. 2016), which is an

automated configuration tool for optimization algorithms.

To set up irace environment, we used default configu-

rations except for the maximum tuning budget which

is set to 1000 iterations. In addition, the maximum it-

eration count of MA ILS-RVND is fixed as 20,000 to

achieve parameter tuning in a reasonable time. As for

training and test problems, we divided a dataset into

two pieces that training part consists of odd-numbered

instances while test part consists of even-numbered in-

stances. The values that were obtained after parameter

tuning are given in Table 1.

Following the literature, the performances of the al-

gorithms were measured by the average gap in percent-

age for each algorithm-dataset pairs as follows:

Avg. Gap =

∑n
i=1(

fi−f∗i
f∗
i
× 100)

n

where n is the number of problem instances in a dataset,

i is the number of a problem, f is the minimum cost

value obtained by an algorithm, and f∗ is the cost value

of the best-known solution. In addition to the average

gaps, elapsed CPU times were also measured for each

run of the proposed algorithm.

It is worth mentioning that two different rules are

applied when calculating distances, or costs, in CVRP

literature: (i) using rounded integer numbers, and (ii)

using double-precision real numbers. Generally the for-

mer is preferred by exact algorithms, whereas the lat-

ter is used in (meta)heuristic algorithms. Following the

conventions, we used double-precision costs for Christofides

et al. dataset. Nevertheless, we used rounded integer

costs for Uchoa et al. as its authors prefer to follow the

TSPLIB convention.

5.2 Preliminary experiments on Christofides et al.

dataset

This part of the paper investigates the effect of multi-

start and adaptive acceptance strategies on the per-

formance of the algorithm. Also, we analyze time and
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Fig. 2 An example CVRP solution (left) and its giant tour representation (right). Nodes 9, 10 and 11 are the artificial depots
that are added to separate routes.

2-opt

+1i1i1

i2+1i2

2-opt*

+1i1i1

i2+1i2

swap

i1 +1i1-1i1

i2 -1i2+1i2

Or-opt

+1i1i1 +1i2i2

i3+1i3

+11i1 +1i2i2

string-exchange

i +11i1 +1i2i2

i3+1i4i3+1i4

Fig. 3 Illustrations of move type for each neighborhood structure that is used in local search.

cost performances of the algorithm under different max-

imum iteration budgets.

In preliminary experiments, we used Christofides et

al. (1979) dataset includes 14 problem instances that

vary in customer size between 50 and 199. The dataset

can be divided into two groups by the distribution of

customers that instances 1-10 have randomly distributed

customers, whereas instances 11-14 have clustered cus-

tomer positions. Moreover, instances 6-10 and 13-14 re-

quire service times and have maximum route duration

constraint.

5.2.1 Effect of multi-start and adaptive acceptance

strategies

This part of the experimental work analyzes the effect

of multi-start and adaptive acceptance strategies that

have been used in the proposed algorithm. To do so, we

compare the following algorithms:

– ILS-RVND: Simple ILS-RVND hybrid without multi-

start and adaptive acceptance strategies.

– M ILS-RVND: ILS-RVND hybrid with multi-start

strategy.

– A ILS-RVND: ILS-RVND hybrid with adaptive

acceptance strategy.

– MA ILS-RVND: ILS-RVND with multi-start and

adaptive acceptance strategies (the proposed algo-

rithm).

Table 2 lists the computational results of the algo-

rithms using different combinations of multi-start and

adaptive acceptance strategies. Each algorithm was run

for 4 × 104 iterations. Reported cost values are based

on 10 runs per instance. Avg. time is the average time
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elapsed between the start and termination of an algo-

rithm per problem instance. The results show that the

proposed MA ILS-RVND algorithm achieves the best

average gap by 0.13% and outperforms the others. It

can also be seen that both M ILS-RVND and A ILS-

RVND achieves lower average gaps than that of simple

ILS-RVND hybrid. Considering average times that al-

gorithms spent, the additional cost of multi-start strat-

egy is a bit larger than that of adaptive acceptance.

However, these additional time cost seems to be ac-

ceptable compared to the gain in average gaps.

In addition, we performed a statistical significance

test whether the reported average gaps of these al-

gorithms are statistically significant. To this end, we

used two-sided Wilcoxon signed rank test between the

proposed algorithm and the other three. The test has

shown that all the obtained p values are smaller than

the significance level of α = 0.05. Therefore, we can

conclude that using both of the multi-start and adap-

tive acceptance strategies makes a contribution to the

performance of the MA ILS-RVND algorithm.

5.2.2 Effect of maximum number of iterations

In metaheuristic optimization, there is a trade-off be-

tween the quality of a solution and the time spent to

find that solution. That is, the more the algorithm runs,

the more the solution is improved. In our algorithm, the

execution time is determined by the maximum number

iterations (MAX ITER) that each iteration covers one

perturbation and one local search steps of the ILS.

This subsection analyzes the effect of the maximum

number of iterations on the performance of the pro-

posed algorithm. The algorithm was run for 1 × 104,

2 × 104, 4 × 104, 8 × 104 and 16 × 104 iterations, and

the computational results are listed in Table 3. As ex-

pected, the average gap performance of the MA ILS-

RVND improves as the number of iterations increases,

and it reaches to 0.07% for the 16×104 iterations. How-

ever, this improvement comes at a price that the com-

putational time increases to 9.94 minutes.

The behavior of the algorithm under increasing max-

imum number of iterations in terms of the average gap

and average time are illustrated together in Fig 4. It can

be seen that the average time increases almost linearly

with the number of iterations. On the other hand, the

average gap decreases by a decreasing rate as the algo-

rithm converges. Hence, applying the same amount of

increase on the MAX ITER provides more improve-

ment for smaller iterations than those of larger ones.

5.3 Computational results on Uchoa et al. dataset

The final computational experiment is conducted on

Uchoa et al. (2017) dataset, which is a relatively new

CVRP benchmark that includes 100 instances ranging

from 100 to 1000 customers. Since the dataset has been

generated by considering several attributes such as de-

pot positioning, customer positioning, demand distri-

bution, and average route size, it is highly compre-

hensive and powerful for measuring the performance

of CVRP optimization algorithms. For the comparison

of the proposed algorithm with the literature, we have

selected two state-of-the-art metaheuristics that have

used this dataset: ILS-SP of Subramanian et al. (2013)

and UHGS of Vidal et al. (2012).

Due to the size of Uchoa et al. dataset, computa-

tional results of the proposed MA ILS-RVND algorithm

are divided into two parts that Table 4 reports the

results for the first 50 instances (100-330 customers),

and Table 5 reports the results for the remaining in-

stances (335-1000 customers). All the experiments for

the MA ILS-RVND algorithm are based on 10 runs and

8×104 maximum number of iterations. In addition, the

reported time for each instance is the time elapsed be-

tween the start and termination of the algorithm using

a single CPU core, and it is presented in minutes. As for

the two algorithms used in the comparison, numerical

results were obtained from (Uchoa et al. 2017).

The computational results show that our MA ILS-

RVND algorithm could achieve average gaps of 0.54% in

terms of average cost values, and is highly effective for

solving CVRP. As for best cost values, the algorithm

could achieve the average gap of 0.37%. Moreover, it

could reach 13 best-known solutions in terms of the

best costs. When the average gaps are compared with

those of the other two state-of-the-art algorithms, it is

seen that the proposed algorithm takes second place af-

ter the UHGS (0.27%) and before the ILS-SP (0.61%).

To compare the time performance of the algorithms, we

used estimated GFlop performances of the CPUs and

obtained scaled times with respect to the computer that

was used in this study. The results reveal that in order

to reach the reported average gaps, our algorithm con-

sumes the least average time compared to others. Over-

all, these results suggest that the proposed algorithm is

comparable with the state-of-the-art.

6 Conclusion

This study has presented a new metaheuristic algo-

rithm, called MA ILS-RVND, to solve the CVRP. The

proposed algorithm is based on the hybridization of
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Table 2 Performance comparison of the ILS-RVND algorithms using different combinations of multi-start and adaptive
acceptance strategies

Instance(n) ILS-RVND A ILS-RVND M ILS-RVND MA ILS-RVND BKS

C1(50) 524.61 524.61 524.61 524.61 524.61

C2(75) 837.74 839.75 835.61 835.26 835.26

C3(100) 827.39 827.63 827.27 826.27 826.14

C4(150) 1031.46 1030.65 1029.30 1029.24 1028.42

C5(199) 1305.12 1306.63 1300.12 1299.59 1291.29

C6(50) 558.59 557.56 555.43 555.43 555.43

C7(75) 920.80 914.56 912.76 912.83 909.68

C8(100) 869.42 869.61 865.94 865.94 865.94

C9(150) 1174.67 1170.76 1164.71 1163.75 1162.55

C10(199) 1410.79 1405.83 1407.97 1402.23 1395.85

C11(120) 1042.11 1042.11 1042.11 1042.11 1042.11

C12(100) 819.56 819.56 819.56 819.56 819.56

C13(120) 1543.92 1547.39 1543.13 1542.88 1541.14

C14(100) 866.37 866.37 866.37 866.37 866.37

Avg. Gap 0.45% 0.38% 0.18% 0.13%

Avg. Time 2.52 min. 2.65 min. 2.81 min. 2.82 min.

Wilcox. S. R.

(vs. MA ILS-RVND)
p =0.002 p =0.002 p =0.023

The number of customers and best-known solutions are denoted by n and BKS, respectively.
Values in boldface indicate that the cost of a best-known solution is reached.

Table 3 Performance comparison of the MA ILS-RVND algorithm running with different maximum number of iterations

Instance(n) 1× 104 iter. 2× 104 iter. 4× 104 iter. 8× 104 iter. 16× 104 iter. BKS

C1(50) 524.61 524.61 524.61 524.61 524.61 524.61

C2(75) 836.34 835.49 835.26 835.26 835.26 835.26

C3(100) 826.71 826.39 826.27 826.14 826.14 826.14

C4(150) 1030.41 1028.75 1029.24 1029.04 1028.95 1028.42

C5(199) 1303.43 1301.88 1299.59 1295.38 1293.76 1291.29

C6(50) 555.43 555.43 555.43 555.43 555.43 555.43

C7(75) 912.89 912.89 912.83 912.51 911.48 909.68

C8(100) 865.94 865.94 865.94 865.94 865.94 865.94

C9(150) 1169.56 1168.56 1163.75 1163.20 1162.68 1162.55

C10(199) 1408.26 1404.93 1402.23 1401.89 1401.31 1395.85

C11(120) 1042.11 1042.11 1042.11 1042.11 1042.11 1042.11

C12(100) 819.56 819.56 819.56 819.56 819.56 819.56

C13(120) 1543.30 1543.06 1542.88 1542.86 1542.86 1541.14

C14(100) 866.37 866.37 866.37 866.37 866.37 866.37

Avg. Gap 0.24% 0.18% 0.13% 0.09% 0.07%

Avg. Time 0.66 min. 1.28 min. 2.82 min. 5.37 min. 9.94 min.

The number of customers and best-known solutions are denoted by n and BKS, respectively. Values
in boldface indicate that the cost of a best-known solution is reached.

ILS and RVND metaheuristics and make use of multi-

start and adaptive acceptance search strategies. RVND

takes part in the local search of the ILS and manages

5 low-level neighborhood structures using the sequen-

tial search strategy. An acceptance function accepts not

only improving solutions but also unimproved ones, in

order to prevent the premature convergence of the algo-

rithm. Here, the acceptance level is determined by an

adaptive threshold value, which is maintained during

the search process. The multi-starting strategy restarts

the algorithm in case of local optima, which is decided

when the number of rejected solutions reaches a certain

limit.

Comprehensive experiments have been conducted

on common CVRP benchmarks to analyze the per-

formance of the proposed algorithm. Preliminary ex-
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Table 4 Computational results of the MA ILS-RVND algorithm for Uchoa et al. dataset and comparison with current state-
of-the-art algorithms (part I)

Instance ILS-SP UHGS MA ILS-RVND BKS

(#)Name Avg. Best Time Avg. Best Time Avg. Best Time

(1)X-n101-k25 27,591.0 27,591 0.13 27,591.0 27,591 1.43 27,793.0 27,793 1.69 27,591

(2)X-n106-k14 26,375.9 26,362 2.01 26,381.8 26,378 4.04 26,381.8 26,381 4.35 26,362

(3)X-n110-k13 14,971.0 14,971 0.20 14,971.0 14,971 1.58 14,971.0 14,971 1.51 14,971

(4)X-n115-k10 12,747.0 12,747 0.18 12,747.0 12,747 1.81 12,747.0 12,747 2.00 12,747

(5)X-n120-k6 13,337.6 13,332 1.69 13,332.0 13,332 2.31 13,332.0 13,332 4.67 13,332

(6)X-n125-k30 55,673.8 55,539 1.43 55,542.1 55,539 2.66 55,981.2 55,960 3.96 55,539

(7)X-n129-k18 28,998.0 28,948 1.92 28,948.5 28,940 2.71 28,947.0 28,940 3.98 28,940

(8)X-n134-k13 10,947.4 10,916 2.07 10,934.9 10,916 3.32 10,922.7 10,916 4.40 10,916

(9)X-n139-k10 13,603.1 13,590 1.60 13,590.0 13,590 2.28 13,590.0 13,590 2.42 13,590

(10)X-n143-k7 15,745.2 15,726 1.64 15,700.2 15,700 3.10 15,726.2 15,726 5.51 15,700

(11)X-n148-k46 43,452.1 43,448 0.84 43,448.0 43,448 3.18 43,457.3 43,448 3.48 43,448

(12)X-n153-k22 21,400.0 21,340 0.49 21,226.3 21,220 5.47 21,385.8 21,366 7.95 21,220

(13)X-n157-k13 16,876.0 16,876 0.76 16,876.0 16,876 3.19 16,876.0 16,876 8.36 16,876

(14)X-n162-k11 14,160.1 14,138 0.54 14,141.3 14,138 3.32 14,168.3 14,147 3.60 14,138

(15)X-n167-k10 20,608.7 20,562 0.86 20,563.2 20,557 3.73 20,602.9 20,562 7.41 20,557

(16)X-n172-k51 45,616.1 45,607 0.64 45,607.0 45,607 3.83 45,621.7 45,607 4.55 45,607

(17)X-n176-k26 48,249.8 48,140 1.11 47,957.2 47,812 7.56 48,702.7 48,398 13.05 47,812

(18)X-n181-k23 25,571.5 25,569 1.59 25,591.1 25,569 6.28 25,575.6 25,569 9.05 25,569

(19)X-n186-k15 24,186.0 24,145 1.72 24,147.2 24,145 5.92 24,155.2 24,147 7.66 24,145

(20)X-n190-k8 17,143.1 17,085 2.10 16,987.9 16,980 12.08 17,008.3 16,989 19.91 16,980

(21)X-n195-k51 44,234.3 44,225 0.87 44,244.1 44,225 6.10 44,293.0 44,264 4.49 44,225

(22)X-n200-k36 58,697.2 58,626 7.48 58,626.4 58,578 7.97 58,868.1 58,729 10.62 58,578

(23)X-n204-k19 19,625.2 19,570 1.08 19,571.5 19,565 5.35 19,642.4 19,584 5.67 19,565

(24)X-n209-k16 30,765.4 30,667 3.80 30,680.4 30,656 8.62 30,721.5 30,698 11.78 30,656

(25)X-n214-k11 11,126.9 10,985 2.26 10,877.4 10,856 10.22 10,922.6 10,898 8.55 10,856

(26)X-n219-k73 117,595.0 117,595 0.85 117,604.9 117,595 7.73 117,597.2 117,595 16.72 117,595

(27)X-n223-k34 40,533.5 40,471 8.48 40,499.0 40,437 8.26 40,588.7 40,524 7.40 40,437

(28)X-n228-k23 25,795.8 25,743 2.40 25,779.3 25,742 9.80 25,998.1 25,879 11.62 25,742

(29)X-n233-k16 19,336.7 19,266 3.01 19,288.4 19,230 6.84 19,313.5 19,276 6.97 19,230

(30)X-n237-k14 27,078.8 27,042 3.46 27,067.3 27,042 8.90 27,068.3 27,042 13.88 27,042

(31)X-n242-k48 82,874.2 82,774 17.83 82,948.7 82,804 12.42 82,996.6 82,934 13.70 82,751

(32)X-n247-k50 37,507.2 37,289 2.06 37,284.4 37,274 20.41 37,837.7 37,673 21.57 37,274

(33)X-n251-k28 38,840.0 38,727 10.77 38,796.4 38,699 11.69 38,860.9 38,828 12.94 38,684

(34)X-n256-k16 18,883.9 18,880 2.02 18,880.0 18,880 6.52 18,884.8 18,880 8.87 18,839

(35)X-n261-k13 26,869.0 26,706 6.67 26,629.6 26,558 12.67 26,718.9 26,660 19.67 26,558

(36)X-n266-k58 75,563.3 75,478 10.03 75,759.3 75,517 21.36 75,817.8 75,712 18.46 75,478

(37)X-n270-k35 35,363.4 35,324 9.07 35,367.2 35,303 11.25 35,406.1 35,358 9.97 35,291

(38)X-n275-k28 21,256.0 21,245 3.59 21,280.6 21,245 12.04 21,274.1 21,250 13.81 21,245

(39)X-n280-k17 33,769.4 33,624 9.62 33,605.8 33,505 19.09 33,669.9 33,583 16.87 33,503

(40)X-n284-k15 20,448.5 20,295 8.64 20,286.4 20,227 19.91 20,391.4 20,331 16.27 20,226

(41)X-n289-k60 95,450.6 95,315 16.11 95,469.5 95,244 21.28 95,614.8 95,507 21.51 95,151

(42)X-n294-k50 47,254.7 47,190 12.42 47,259.0 47,171 14.70 47,335.3 47,274 10.32 47,161

(43)X-n298-k31 34,356.0 34,239 6.92 34,292.1 34,231 10.93 34,416.7 34,317 12.04 34,231

(44)X-n303-k21 21,895.8 21,812 14.15 21,850.9 21,748 17.28 21,890.8 21,845 15.08 21,744

(45)X-n308-k13 26,101.1 25,901 9.53 25,895.4 25,859 15.31 26,091.5 25,949 28.10 25,859

(46)X-n313-k71 94,297.3 94,192 17.50 94,265.2 94,093 22.41 94,477.4 94,388 22.81 94,044

(47)X-n317-k53 78,356.0 78,355 8.56 78,387.8 78,355 22.37 78,363.0 78,355 43.19 78,355

(48)X-n322-k28 29,991.3 29,877 14.68 29,956.1 29,870 15.16 30,025.5 29,971 11.56 29,834

(49)X-n327-k20 27,812.4 27,599 19.13 27,628.2 27,564 18.19 27,773.2 27,706 21.58 27,532

(50)X-n331-k15 31,235.5 31,105 15.70 31,159.6 31,103 24.43 31,165.9 31,105 30.27 31,102
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Table 5 Computational results of the MA ILS-RVND algorithm for Uchoa et al. dataset and comparison with current state-
of-the-art algorithms (part II)

Instance ILS-SP UHGS MA ILS-RVND BKS

(#)Name Avg. Best Time Avg. Best Time Avg. Best Time

(51)X-n336-k84 139,461.0 139,197 21.41 139,534.9 139,210 37.96 139,760.6 139,640 25.84 139,135

(52)X-n344-k43 42,284.0 42,146 22.58 42,208.8 42,099 21.67 42,342.8 42,273 15.00 42,056

(53)X-n351-k40 26,150.3 26,021 25.21 26,014.0 25,946 33.73 26,124.5 26,057 18.11 25,928

(54)X-n359-k29 52,076.5 51,706 48.86 51,721.7 51,509 34.85 51,870.4 51,787 36.45 51,505

(55)X-n367-k17 23,003.2 22,902 13.13 22,838.4 22,814 22.02 22,943.0 22,888 24.75 22,814

(56)X-n376-k94 147,713.0 147,713 7.10 147,750.2 147,717 28.26 147,722.3 147,714 59.12 147,713

(57)X-n384-k52 66,372.5 66,116 34.47 66,270.2 66,081 40.20 66,360.4 66,320 27.66 65,943

(58)X-n393-k38 38,457.4 38,298 20.82 38,374.9 38,269 28.65 38,439.2 38,389 22.28 38,260

(59)X-n401-k29 66,715.1 66,453 60.36 66,365.4 66,243 49.52 66,515.1 66,428 61.91 66,187

(60)X-n411-k19 19,954.9 19,792 23.76 19,743.8 19,718 34.71 19,950.2 19,801 37.72 19,718

(61)X-n420-k130 107,838.0 107,798 22.19 107,924.1 107,798 53.19 108,109.4 108,021 24.79 107,798

(62)X-n429-k61 65,746.6 65,563 38.22 65,648.5 65,501 41.45 65,773.4 65,727 24.60 65,483

(63)X-n439-k37 36,441.6 36,395 39.63 36,451.1 36,395 34.55 36,457.6 36,428 26.22 36,391

(64)X-n449-k29 56,204.9 55,761 59.94 55,553.1 55,378 64.92 55,760.7 55,645 37.02 55,269

(65)X-n459-k26 24,462.4 24,209 60.59 24,272.6 24,181 42.80 24,347.9 24,308 35.54 24,145

(66)X-n469-k138 222,182.0 221,909 36.32 222,617.1 222,070 86.65 223,029.3 222,722 55.34 221,909

(67)X-n480-k70 89,871.2 89,694 50.40 89,760.1 89,535 66.96 89,800.8 89,725 43.58 89,458

(68)X-n491-k59 67,226.7 66,965 52.23 66,898.0 66,633 71.94 66,941.7 66,788 38.88 66,510

(69)X-n502-k39 69,346.8 69,284 80.75 69,328.8 69,253 63.61 69,288.1 69,244 92.83 69,230

(70)X-n513-k21 24,434.0 24,332 35.04 24,296.6 24,201 33.09 24,372.0 24,273 29.24 24,201

(71)X-n524-k153 155,005.0 154,709 27.27 154,979.5 154,774 80.70 155,857.3 155,369 90.10 154,593

(72)X-n536-k96 95,700.7 95,524 62.07 95,330.6 95,122 107.53 95,644.8 95,512 59.60 94,988

(73)X-n548-k50 86,874.1 86,710 63.95 86,998.5 86,822 84.24 86,863.0 86,799 112.48 86,701

(74)X-n561-k42 43,131.3 42,952 68.86 42,866.4 42,756 60.60 43,010.2 42,933 34.48 42,722

(75)X-n573-k30 51,173.0 51,092 112.03 50,915.1 50,780 188.15 50,957.4 50,882 115.89 50,718

(76)X-n586-k159 190,919.0 190,612 78.54 190,838.0 190,543 175.29 191,215.6 191,043 79.36 190,423

(77)X-n599-k92 109,384.0 109,056 72.96 109,064.2 108,813 125.91 109,159.8 108,985 65.89 108,489

(78)X-n613-k62 60,444.2 60,229 74.80 59,960.0 59,778 117.31 60,133.5 60,004 40.95 59,556

(79)X-n627-k43 62,905.6 62,783 162.67 62,524.1 62,366 239.68 62,617.3 62,517 95.00 62,210

(80)X-n641-k35 64,606.1 64,462 140.42 64,192.0 63,839 158.81 64,411.9 64,315 93.56 63,737

(81)X-n655-k131 106,782.0 106,780 47.24 106,899.1 106,829 150.48 106,827.6 106,810 212.86 106,780

(82)X-n670-k130 147,676.0 147,045 61.24 147,222.7 146,705 264.10 149,348.4 148,290 151.21 146,477

(83)X-n685-k75 68,988.2 68,646 73.85 68,654.1 68,425 156.71 68,811.6 68,684 61.45 68,261

(84)X-n701-k44 83,042.2 82,888 210.08 82,487.4 82,293 253.17 82,656.2 82,545 120.04 81,934

(85)X-n716-k35 44,171.6 44,021 225.79 43,641.4 43,525 264.28 43,917.8 43,726 110.78 43,414

(86)X-n733-k159 137,045.0 136,832 111.56 136,587.6 136,366 244.53 136,774.9 136,635 74.00 136,250

(87)X-n749-k98 78,275.9 77,952 127.24 77,864.9 77,715 313.88 77,964.1 77,855 92.03 77,365

(88)X-n766-k71 115,738.0 115,443 242.11 115,147.9 114,683 382.99 115,780.6 115,555 162.12 114,525

(89)X-n783-k48 73,722.9 73,447 235.48 73,009.6 72,781 269.70 73,193.0 73,035 114.52 72,445

(90)X-n801-k40 74,005.7 73,830 432.64 73,731.0 73,587 289.24 73,723.0 73,621 201.06 73,331

(91)X-n819-k171 159,425.0 159,164 148.91 158,899.3 158,611 374.28 159,219.9 158,987 122.97 158,265

(92)X-n837-k142 195,027.0 194,804 173.17 194,476.5 194,266 463.36 194,629.0 194,401 181.02 193,810

(93)X-n856-k95 89,277.6 89,060 153.65 89,238.7 89,118 288.43 89,183.1 89,038 153.92 89,002

(94)X-n876-k59 100,417.0 100,177 409.31 99,884.1 99,715 495.38 100,095.9 99,958 207.18 99,331

(95)X-n895-k37 54,958.5 54,713 410.17 54,439.8 54,172 321.89 54,664.9 54,461 141.62 53,946

(96)X-n916-k207 330,948.0 330,639 226.08 330,198.3 329,836 560.81 330,386.0 330,132 288.43 329,247

(97)X-n936-k151 134,530.0 133,592 202.50 133,512.9 133,140 531.50 135,572.9 134,890 199.36 132,923

(98)X-n957-k87 85,936.6 85,697 311.20 85,822.6 85,672 432.90 85,728.6 85,607 243.52 85,478

(99)X-n979-k58 120,253.0 119,994 687.22 119,502.1 119,194 553.96 120,354.6 119,821 321.29 119,008

(100)X-n1001-k43 73,985.4 73,776 792.75 72,956.0 72,742 549.03 73,476.7 73,318 207.55 72,403

Avg. Gap 0.61% 0.33% 0.27% 0.09% 0.54% 0.37%

Avg. Time 71.71 min. 98.79 min. 54.77 min.

CPU Xeon 3.07 GHz Xeon 3.07 GHz Core i7 3.40 GHz

∼ GFlops/Core 3.63 3.63 4.01

Scale Factor 0.91 0.91 1.00

Scaled Time 65,26 min. 89,90 min. 54,77 min.

BKS denotes the best-known solutions that are taken from http://vrp.atd-lab.inf.puc-rio.br/. All the time values are given
in minutes. Estimated GFlop values for CPUs are taken from https://asteroidsathome.net/boinc/cpu_list.php/

http://vrp.atd-lab.inf.puc-rio.br/
https://asteroidsathome.net/boinc/cpu_list.php/
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Fig. 4 Impact of the maximum number of iterations on the performance of MA ILS-RVND algorithm

periments for Christofides et al. (1979) dataset have

proved that using multi-start and adaptive acceptance

strategies together contribute the performance of pure

ILS-RVND algorithm. It has also shown that CPU time

of the algorithm increases linearly with the number of

iterations. Final experiments for Uchoa et al. (2017)

showed that our algorithm is highly effective for solv-

ing CVRP and comparable with state-of-the-art algo-

rithms.

Further research might investigate how parameter

control techniques can be applied to the two most crit-

ical parameters of MA ILS-RVND, which are pFactor

and rstFactor. Therefore, the algorithm could adapt

itself to each problem instance, and improve its overall

performance. Another possible area of future research

would be extending and applying MA ILS-RVND to

other common VRP variants.
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